skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergent Scaling of Dissolved Oxygen (DO) in Freshwater Streams Across Contiguous USA
Abstract Dissolved oxygen (DO) indicates the overall stream water quality and ecosystem health. We investigated emergent scaling of DO with the dominant environmental drivers in freshwater (non‐coastal) streams across the contiguous United States. Available data of monthly to quarterly sampling frequencies during 1998–2015 were obtained for 86 U.S. streams. Data analytics indicated water temperature (Tw) and pH (a proxy of carbon dioxide) dominating the key environmental process components of DO concentrations in the freshwater streams. The “climatic” process component (comprising Twand net radiation) had, respectively, ∼3 and ∼9 times stronger control on DO than the “biogeochemical” (total nitrogen, total phosphorus, pH, and specific conductivity) and “hydro‐atmospheric” exchange (stream flow and atmospheric pressure) components. The predominant climatic control on stream DO was linked to the high extent of vegetated land (on average ∼53%) and steep slope (∼10%) in the draining watersheds, despite the notable presence of agricultural land (∼35%). An emergent power law scaling relationship was then developed to acceptably predict DO (mg/l) based on Tw(K) and pH, with the approximate exponents of −15/2 and 1/2, respectively (Nash‐Sutcliffe Efficiency = 0.72–0.73). The scaling law demonstrated the underlying organizing principles such as the depletion of stream DO due to reduced dissolution and increased metabolic respiration with the increasing temperature and nutrients. The scaling law was persistent across the various U.S. streams, representing gradients in climate, hydrology, biogeochemistry, and land use/cover. The findings would help understand and manage water quality and ecosystem health in freshwater streams across the United States and beyond.  more » « less
Award ID(s):
1561942 1454435
PAR ID:
10515659
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
2
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Riparian zones and the streams they border provide vital habitat for organisms, water quality protection, and other important ecosystem services. These areas are under pressure from local (land use/land cover change) to global (climate change) processes. Woody vegetation is expanding in grassland riparian zones worldwide. Here we report on a decade‐long watershed‐scale mechanical removal of woody riparian vegetation along 4.5 km of stream channel in a before–after control impact experiment. Prior to this removal, woody plants had expanded into grassy riparian areas, associated with a decline in streamflow, loss of grassy plant species, and other ecosystem‐scale impacts. We confirmed some expected responses, including rapid increases in stream nutrients and sediments, disappearance of stream mosses, and decreased organic inputs to streams via riparian leaves. We were surprised that nutrient and sediment increases were transient for 3 years, that there was no recovery of stream discharge, and that areas with woody removal did not shift back to a grassland state, even when reseeded with grassland species. Rapid expansion of shrubs (Cornus drummondii,Prunus americana) in the areas where trees were removed allowed woody vegetation to remain dominant despite repeating the cutting every 2 years. Our results suggest woody expansion can fundamentally alter terrestrial and aquatic habitat connections in grasslands, resulting in inexorable movement toward a new ecosystem state. Human pressures, such as climate change, atmospheric CO2increases, and elevated atmospheric nitrogen deposition, could continue to push the ecosystem along a trajectory that is difficult to change. Our results suggest that predicting relationships between riparian zones and the streams they border could be difficult in the face of global change in all biomes, even in well‐studied sites. 
    more » « less
  2. Abstract Disturbances can alter the structure and function of ecosystems. In stream ecosystems, changes in discharge and physicochemistry at short, intermediate, and long recurrence intervals can affect food webs and ecosystem processes. In this paper, we compare pH regimes in streams at La Selva Biological Station, Costa Rica, where episodic acidification frequency across the stream network varies widely due to buffering from inputs of bicarbonate‐rich interbasin groundwater. To examine the effects of acidification on ecosystem structure and function, we experimentally increased the buffering capacity of a headwater stream reach and compared it to an unbuffered upstream reach. We compared these reaches to a naturally buffered and unbuffered reaches of a second headwater stream. We quantified ecosystem structural (macroinvertebrate assemblages on leaf litter and coarse woody debris) and functional responses (leaf litter and coarse woody debris decomposition rates, and growth rates of a focal insect taxon [Diptera: Chironomidae]). Non‐metric multidimensional scaling and analysis of similarity revealed that macroinvertebrate assemblages were relatively homogenous across the four study reaches, although the naturally buffered reach was the most dissimilar. Ecosystem function, as measured by chironomid growth rates, was greater in the naturally buffered reach, while decomposition rates did not differ across the four reaches. Our results indicate that biological assemblages are adapted to pH regimes of frequently acidified stream reaches. Our experiment informs the effects on structure and function at short time scales in streams that experience moderate acidification, but larger magnitude acidification events in response to hydroclimatic change, as projected under climate change scenarios, may induce stronger responses in streams. 
    more » « less
  3. Abstract Freshwater ecosystems reflect the landscapes in which they are embedded. The biogeochemistry of these systems is fundamentally linked to climate and watershed processes that control fluxes of water and the mobilization of energy and nutrients imprinting as variation in stream water chemistry. Disentangling these processes is difficult as they operate at multiple scales varying across space. We examined the relative importance of climate, soil, and watershed characteristics in mediating direct and indirect pathways that influence carbon and nitrogen availability in streams and rivers across spatial scales. Our data set comprised landscape and climatic variables and 37,995 chemistry measurements of carbon and nitrogen across 459 streams and rivers spanning the continental United States. Models explained a small fraction of carbon and nitrogen concentrations at the continental scale (25% and 6%, respectively) but 61% and 40%, respectively, at smaller spatial scales. Hydrometeorological processes were always important in mediating the availability of solutes but the mechanistic implications were variable across spatial scales. The influence of hydrometeorology on concentrations was often not direct, rather it was mediated by soil characteristics for carbon and watershed characteristics for nitrogen. For example, the seasonality of precipitation was often important in determining carbon concentrations through its influence on soil moisture at biogeoclimatic spatial scales, whereas it had a direct influence on concentrations at the continental scale. Our results suggest that hydrometeorological forcing remains the consistent driver of energy and nutrient concentrations but the mechanism influencing patterns varies across broad spatial scales. 
    more » « less
  4. Abstract Over half of global rivers and streams lack perennial flow, and understanding the distribution and drivers of their flow regimes is critical for understanding their hydrologic, biogeochemical, and ecological functions. We analyzed nonperennial flow regimes using 540 U.S. Geological Survey watersheds across the contiguous United States from 1979 to 2018. Multivariate analyses revealed regional differences in no‐flow fraction, date of first no flow, and duration of the dry‐down period, with further divergence between natural and human‐altered watersheds. Aridity was a primary driver of no‐flow metrics at the continental scale, while unique combinations of climatic, physiographic and anthropogenic drivers emerged at regional scales. Dry‐down duration showed stronger associations with nonclimate drivers compared to no‐flow fraction and timing. Although the sparse distribution of nonperennial gages limits our understanding of such streams, the watersheds examined here suggest the important role of aridity and land cover change in modulating future stream drying. 
    more » « less
  5. This entry contains the data and code for the analysis described in URycki DR, Good SP, Crump BC, Chadwick J and Jones GD (2020) River Microbiome Composition Reflects Macroscale Climatic and Geomorphic Differences in Headwater Streams. Frontiers in Water 2:574728. doi: 10.3389/frwa.2020.574728 Abstract: Maintaining the quality and quantity of water resources in light of complex changes in climate, human land use, and ecosystem composition requires detailed understanding of ecohydrologic function within catchments, yet monitoring relevant upstream characteristics can be challenging. In this study, we investigate how variability in riverine microbial communities can be used to monitor the climate, geomorphology, land-cover, and human development of watersheds. We collected streamwater DNA fragments and used 16S rRNA sequencing to profile microbiomes from headwaters to outlets of the Willamette and Deschutes basins, two large watersheds prototypical of the U.S. Pacific Northwest region. In the temperate, north-south oriented Willamette basin, microbial community composition correlated most strongly with geomorphic characteristics (mean Mantel test statistic r = 0.19). Percentage of forest and shrublands (r = 0.34) and latitude (r = 0.41) were among the strongest correlates with microbial community composition. In the arid Deschutes basin, however, climatic characteristics were the most strongly correlated to microbial community composition (e.g., r = 0.11). In headwater sub-catchments of both watersheds, microbial community assemblages correlated with catchment-scale climate, geomorphology, and land-cover (r = 0.46, 0.38, and 0.28, respectively), but these relationships were weaker downstream. Development-related characteristics were not correlated with microbial community composition in either watershed or in small or large sub-catchments. Our results build on previous work relating streamwater microbiomes to hydrologic regime and demonstrate that microbial DNA in headwater streams additionally reflects the structural configuration of landscapes as well as other natural and anthropogenic processes upstream. Our results offer an encouraging indication that streamwater microbiomes not only carry information about microbial ecology, but also can be useful tools for monitoring multiple upstream watershed characteristics. 
    more » « less