skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217515

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In recent years, the integration of single‐cell multi‐omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non‐single omics perspective, but it still suffers many challenges, such as omics‐variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single‐cell RNA‐seq data, but it is not clear how it will work on the integrated single‐cell multi‐omics data. Here, a cell cycle‐aware network (CCAN) is developed to remove cell cycle effects from the integrated single‐cell multi‐omics data while keeping the cell type‐specific variations. This is the first computational model to study the cell‐cycle effects in the integration of single‐cell multi‐omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA‐seq datasets from different protocols, integrating paired and unpaired scRNA‐seq and scATAC‐seq data, accurately transferring cell type labels from scRNA‐seq to scATAC‐seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data. 
    more » « less
  2. Abstract Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial–mesenchymal transition, cell–cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug’s Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user’s exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets. 
    more » « less