The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory activity of Piper (Piperaceae) leaf extracts against model plant, fungal, and bacterial organisms. This method enabled us to prioritize specific spectral features linked to bioactivity, offering a targeted approach to natural product discovery. In this study, we validate the predictive capacity of the WGCNA by isolating the compounds responsible for the bioactivity-associated resonances and confirming their antifungal efficacy. Using growth inhibition assays, we verified that the isolated compounds, including three novel antifungal agents, exhibited significant bioactivity. Notably, one of these compounds contains a rare imidazolium heterocyclic motif, marking a new structural class in Piper. These findings substantiate the 1H NMR-based WGCNA as a reliable tool for identifying structural types associated with biological activity, streamlining the process of discovering bioactive natural products in complex extracts.
more »
« less
Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential
Abstract Microbial‐derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug‐resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low‐yield biosynthetic gene clusters in the genusStreptomyces. However, low natural product yields—improvements to which have been hindered by the lack of high throughput methods—have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins—angucycline family polyketides under investigation as cancer therapeutics—by a genetically modifiedStreptomyces cyanogenus136. After simplifying the extraction process fromS. cyanogenuscultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram‐positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram‐negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced byStreptomyces, as well as the light‐absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
more »
« less
- Award ID(s):
- 2246963
- PAR ID:
- 10515709
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Biotechnology and Bioengineering
- ISSN:
- 0006-3592
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reguera, Gemma (Ed.)ABSTRACT Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.<bold>IMPORTANCE</bold>Polycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, includingStreptomycesandLysobacterspp.Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.more » « less
-
null (Ed.)Actinomycetes are prolific sources of bioactive molecules. Traditional workflows including bacterial isolation, fermentation, metabolite identification, and structure elucidation have resulted in high rates of natural product rediscovery in recent years. Recent advancements in multi-omics techniques have uncovered cryptic gene clusters within the genomes of actinomycetes, potentially introducing vast resources for the investigation of bioactive molecules. While developments in culture techniques have allowed for the fermentation of difficult-to-culture actinomycetes, high throughput metabolite screening has offered plenary tools to accelerate hits discovery. A variety of new bioactive molecules have been isolated from actinomycetes of unique environmental origins, such as endophytic and symbiotic actinomycetes. Synthetic biology and genome mining have also emerged as new frontiers for the discovery of bioactive molecules. This review covers the highlights of recent developments in actinomycete-derived natural product drug discovery.more » « less
-
Streptomycesspecies are renowned for their ability to produce bioactive natural products (NPs) via biosynthetic gene clusters (BGCs). However, many BGCs remain transcriptionally silent under standard laboratory conditions. Among the key regulatory mechanisms for NP biosynthesis are theγ‐butyrolactone (GBL) signaling molecules, which have been widely studied for their role in repressor‐molecule circuits. While theS. coelicolorbutanolides (SCBs) and A‐factor fromS. griseushave been extensively studied, the virginiae butanolides (VBs) fromS. virginiae,which alleviate repression of the biosynthesis of the antibiotic virginiamycins via binding to the cluster situated TetR‐like repressor BarA, remain understudied. This is in large part due to limited access to enantiopure VBs. Herein, we report a diastereoselective and diversifiable route to access the VB hormones, starting from a protected (R)‐paraconyl alcohol intermediate. A library of VB derivatives was synthesized and tested for their ability to alleviate repression of BarA using a newly developed green fluorescent protein (GFP) reporter assay. The synthesis and assay described herein established the most quantitative structure–activity relationship (SAR) analysis of the VBs to date. Overall, this study provides new tools for probing NP regulation inStreptomycesand enables new strategies for BGC activation using synthetic GBL molecules.more » « less
-
Ellermeier, Craig D (Ed.)ABSTRACT Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here, we investigated this link with the PrgI protein, the monomer of the secretory channel of the type 3 secretion system (T3SS) ofSalmonella enterica. Despite detailed knowledge of the PrgI needle’s assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one-pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape to characterize the PrgI needle’s mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS’s assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes.IMPORTANCEProtein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system fromSalmonella entericacan impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system.more » « less
An official website of the United States government

