Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC–MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3- hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy.
more »
« less
Amino acid and protein specificity of protein fatty acylation in Caenorhabditis elegans
Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins ofS-acyl moieties differ fromN- andO-fatty acylation. Here, we show that fatty acylation patterns inCaenorhabditis elegansdiffer markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteineS-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry–capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013S-acylated proteins and 510 hydroxylamine-resistantN- orO-acylated proteins. Subsets ofS-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including theS-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.
more »
« less
- Award ID(s):
- 2226270
- PAR ID:
- 10515710
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 5
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.more » « less
-
Abstract Microbial lipid metabolism is an attractive route for producing oleochemicals. The predominant strategy centers on heterologous thioesterases to synthesize desired chain-length fatty acids. To convert acids to oleochemicals (e.g., fatty alcohols, ketones), the narrowed fatty acid pool needs to be reactivated as coenzyme A thioesters at cost of one ATP per reactivation - an expense that could be saved if the acyl-chain was directly transferred from ACP- to CoA-thioester. Here, we demonstrate such an alternative acyl-transferase strategy by heterologous expression of PhaG, an enzyme first identified inPseudomonads, that transfers 3-hydroxy acyl-chains between acyl-carrier protein and coenzyme A thioester forms for creating polyhydroxyalkanoate monomers. We use it to create a pool of acyl-CoA’s that can be redirected to oleochemical products. Through bioprospecting, mutagenesis, and metabolic engineering, we develop three strains ofEscherichia colicapable of producing over 1 g/L of medium-chain free fatty acids, fatty alcohols, and methyl ketones.more » « less
-
Abstract We describe a new assay that reports directly on the acylation state of a user-chosen transfer RNA (tRNA) in cells. We call this assay 3-Prime Adenosine-Retaining Aminoacyl–tRNA Isolation (PARTI). It relies on high-resolution mass spectrometry identification of the acyl-adenosine species released upon RNase A cleavage of isolated cellular tRNA. Here we develop the PARTI workflow and apply it to understand three recent observations related to the cellular incorporation of non-α-amino acid monomers into protein: (i) the origins of the apparent selectivity of translation with respect to β2-hydroxy acid enantiomers; (ii) the activity of PylRS variants for benzyl derivatives of malonic acid; and (iii) the apparent inability of N-Me amino acids to function as ribosome substrates in living cells. Using the PARTI assay, we also provide direct evidence for the cellular production of 2′,3′-diacylated tRNA in certain cases. The ease and simplicity of the PARTI workflow should benefit ongoing efforts to study and improve the cellular incorporation of non-α-amino acid monomers into proteins.more » « less
-
null (Ed.)In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.more » « less
An official website of the United States government

