We implement two novel algorithms for sparse-matrix dense-matrix multiplication (SpMM) on the GPU. Our algorithms expect the sparse input in the popular compressed-sparse-row (CSR) format and thus do not require expensive format conversion. While previous SpMM work concentrates on thread-level parallelism, we additionally focus on latency hiding with instruction-level parallelism and load-balancing. We show, both theoretically and experimentally, that the proposed SpMM is a better fit for the GPU than previous approaches. We identify a key memory access pattern that allows efficient access into both input and output matrices that is crucial to getting excellent performance on SpMM. By combining these two ingredients---(i) merge-based load-balancing and (ii) row-major coalesced memory access---we demonstrate a 4.1x peak speedup and a 31.7% geomean speedup over state-of-the-art SpMM implementations on real-world datasets.
more »
« less
Exploring Data Layout for Sparse Tensor Times Dense Matrix on GPUs
An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTM is a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this article, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE’s SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.
more »
« less
- Award ID(s):
- 2107556
- PAR ID:
- 10515726
- Publisher / Repository:
- ACM Transactions on Architecture and Code Generation
- Date Published:
- Journal Name:
- ACM Transactions on Architecture and Code Optimization
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 1544-3566
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.more » « less
-
Tensor computations present significant performance challenges that impact a wide spectrum of applications. Efforts on improving the performance of tensor computations include exploring data layout, execution scheduling, and parallelism in common tensor kernels. This work presents a benchmark suite for arbitrary-order sparse tensor kernels using state-of-the-art tensor formats: coordinate (COO) and hierarchical coordinate (HiCOO). It demonstrates a set of reference tensor kernel implementations and some observations on Intel CPUs and NVIDIA GPUs.more » « less
-
Sparse matrix-matrix multiplication (SpMM) is a critical computational kernel in numerous scientific and machine learning applications. SpMM involves massive irregular memory accesses and poses great challenges to conventional cache-based computer architectures. Recently dedicated SpMM accelerators have been proposed to enhance SpMM performance. However, current SpMM accelerators still face challenges in adapting to varied sparse patterns, fully exploiting inherent parallelism, and optimizing cache performance. To address these issues, we introduce ACES, a novel SpMM accelerator in this study. First, ACES features an adaptive execution flow that dynamically adjusts to diverse sparse patterns. The adaptive execution flow balances parallel computing efficiency and data reuse. Second, ACES incorporates locality-concurrency co-optimizations within the global cache. ACES utilizes a concurrency-aware cache management policy, which considers data locality and concurrency for optimal replacement decisions. Additionally, the integration of a non-blocking buffer with the global cache enhances concurrency and reduces computational stalls. Third, the hardware architecture of ACES is designed to integrate all innovations. The architecture ensures efficient support across the adaptive execution flow, advanced cache optimizations, and fine-grained parallel processing. Our performance evaluation demonstrates that ACES significantly outperforms existing solutions, providing a 2.1× speedup and marking a substantial advancement in SpMM acceleration.more » « less
-
Tensor contractions are ubiquitous in computational chemistry andphysics, where tensors generally represent states or operators andcontractions express the algebra of these quantities. In this context,the states and operators often preserve physical conservation laws,which are manifested as group symmetries in the tensors. These groupsymmetries imply that each tensor has block sparsity and can be storedin a reduced form. For nontrivial contractions, the memory footprint andcost are lowered, respectively, by a linear and a quadratic factor inthe number of symmetry sectors. State-of-the-art tensor contractionsoftware libraries exploit this opportunity by iterating over blocks orusing general block-sparse tensor representations. Both approachesentail overhead in performance and code complexity. With intuition aidedby tensor diagrams, we present a technique, irreducible representationalignment, which enables efficient handling of Abelian group symmetriesvia only dense tensors, by using contraction-specific reduced forms.This technique yields a general algorithm for arbitrary group symmetriccontractions, which we implement in Python and apply to a variety ofrepresentative contractions from quantum chemistry and tensor networkmethods. As a consequence of relying on only dense tensor contractions,we can easily make use of efficient batched matrix multiplication viaIntel’s MKL and distributed tensor contraction via the Cyclops library,achieving good efficiency and parallel scalability on up to 4096 KnightsLanding cores of a supercomputer.more » « less
An official website of the United States government

