skip to main content


Title: Design Principles for Sparse Matrix Multiplication on the GPU
We implement two novel algorithms for sparse-matrix dense-matrix multiplication (SpMM) on the GPU. Our algorithms expect the sparse input in the popular compressed-sparse-row (CSR) format and thus do not require expensive format conversion. While previous SpMM work concentrates on thread-level parallelism, we additionally focus on latency hiding with instruction-level parallelism and load-balancing. We show, both theoretically and experimentally, that the proposed SpMM is a better fit for the GPU than previous approaches. We identify a key memory access pattern that allows efficient access into both input and output matrices that is crucial to getting excellent performance on SpMM. By combining these two ingredients---(i) merge-based load-balancing and (ii) row-major coalesced memory access---we demonstrate a 4.1x peak speedup and a 31.7% geomean speedup over state-of-the-art SpMM implementations on real-world datasets.  more » « less
Award ID(s):
1629657
NSF-PAR ID:
10066978
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Euro-Par 2018: Proceedings of the 24th International European Conference on Parallel and Distributed Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01X (up to 132.67X) speedup and a 33.82X energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69X to 2.19X speedup and consumes 4.77X to 8.91X less energy. GRAPHR gains a speedup of 1.16X to 4.12X, and is 3.67X to 10.96X more energy efficiency compared to PIM-based architecture. 
    more » « less
  2. null (Ed.)
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which allow graph algorithms to be expressed in a performant, succinct, composable, and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction.Exploiting output sparsityallows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in “GraphBLAST”, the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse andGBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework ,while offering a simpler and more concise programming model. 
    more » « less
  3. Candecomp / PARAFAC (CP) decomposition, a generalization of the matrix singular value decomposition to higher-dimensional tensors, is a popular tool for analyzing multidimensional sparse data. On tensors with billions of nonzero entries, computing a CP decomposition is a computationally intensive task. We propose the first distributed-memory implementations of two randomized CP decomposition algorithms,CP-ARLS-LEV and STS-CP, that offer nearly an order-of-magnitude speedup at high decomposition ranks over well-tuned non-randomized decomposition packages. Both algorithms rely on leverage score sampling and enjoy strong theoretical guarantees, each with varying time and accuracy tradeoffs. We tailor the communication schedule for our random sampling algorithms, eliminating expensive reduction collectives and forcing communication costs to scale with the random sample count. Finally, we optimize the local storage format for our methods, switching between analogues of compressed sparse column and compressed sparse row formats. Experiments show that our methods are fast and scalable,producing 11x speedup over SPLATT by decomposing the billion-scale Reddit tensor on 512 CPU cores in under two minutes. 
    more » « less
  4. Sparse matrix-dense vector (SpMV) multiplication is inherent in most scientific, neural networks and machine learning algorithms. To efficiently exploit sparsity of data in the SpMV computations, several compressed data representations have been used. However, the compressed data representations of sparse date can result in overheads for locating nonzero values, requiring indirect memory accesses and increased instruction count and memory access delays. We call these translations of compressed representations as metadata processing. We propose a memory-side accelerator for metadata (or indexing) computations and supplying only the required nonzero values to the processor, additionally permitting an overlap of indexing with core computations on nonzero elements. In this contribution, we target our accelerator for low-end microcontrollers with very limited memory and processing capabilities. In this paper we will explore two dedicated ASIC designs of the proposed accelerator that handles the indexed memory accesses for compressed sparse row (CSR) format working alongside a simple RISC-like programmable core. One version of the the accelerator supplies only vector values corresponding to nonzero matrix values and the second version supplies both nonzero matrix and matching vector values for SpMV computations. Our experiments show speedups ranging between 1.3 and 2.1 times for SpMV for different levels of sparsities. Our accelerator also results in energy savings ranging between 15.8% and 52.7% over different matrix sizes, when compared to the baseline system with primary RISC-V core performing all computations. We use smaller synthetic matrices with different sparsities and larger real-world matrices with higher sparsities (below 1% non-zeros) in our experimental evaluations. 
    more » « less
  5. Graph neural networks (GNNs) have emerged as a powerful tool to process graph-based data in fields like communication networks, molecular interactions, chemistry, social networks, and neuroscience. GNNs are characterized by the ultra-sparse nature of their adjacency matrix that necessitates the development of dedicated hardware beyond general-purpose sparse matrix multipliers. While there has been extensive research on designing dedicated hardware accelerators for GNNs, few have extensively explored the impact of the sparse storage format on the efficiency of the GNN accelerators. This paper proposes SCV-GNN with the novel sparse compressed vectors (SCV) format optimized for the aggregation operation. We use Z-Morton ordering to derive a data-locality-based computation ordering and partitioning scheme. The paper also presents how the proposed SCV-GNN is scalable on a vector processing system. Experimental results over various datasets show that the proposed method achieves a geometric mean speedup of 7.96× and 7.04× over CSC and CSR aggregation operations, respectively. The proposed method also reduces the memory traffic by a factor of 3.29× and 4.37× over compressed sparse column (CSC) and compressed sparse row (CSR), respectively. Thus, the proposed novel aggregation format reduces the latency and memory access for GNN inference. 
    more » « less