skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeastSaccharomyces eubayanusexperimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment–cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.  more » « less
Award ID(s):
2110403 1442148
PAR ID:
10515804
Author(s) / Creator(s):
; ; ;
Editor(s):
Zanders, Sarah E
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS Biology
Volume:
21
Issue:
11
ISSN:
1545-7885
Page Range / eLocation ID:
e3001909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humbert, Jean-François (Ed.)
    Diverse phytoplankton modulate the coupling between the ocean carbon and nutrient cycles through life-history traits such as cell size, elemental quotas, and ratios. Biodiversity is mostly considered at broad functional levels, but major phytoplankton lineages are themselves highly diverse. As an example,Synechococcusis found in nearly all ocean regions, and we demonstrate contains extensive intraspecific variation. Here, we grew four closely relatedSynechococcusisolates in serially transferred cultures across a range of temperatures (16–25°C) to quantify for the relative role of intraspecific trait variation vs. environmental change. We report differences in cell size (p<0.01) as a function of strain and clade (p<0.01). The carbon (QC), nitrogen (QN), and phosphorus (QP) cell quotas all increased with cell size. Furthermore, cell size has an inverse relationship to growth rate. Within our experimental design, temperature alone had a weak physiological effect on cell quota and elemental ratios. Instead, we find systemic intraspecific variance of C:N:P, with cell size and N:P having an inverse relationship. Our results suggest a key role for intraspecific life history traits in determining elemental quotas and stoichiometry. Thus, the extensive biodiversity harbored within many lineages may modulate the impact of environmental change on ocean biogeochemical cycles. 
    more » « less
  2. Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane– and cell-wall–associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages. 
    more » « less
  3. Evolutionary processes have transformed simple cellular life into a great diversity of forms, ranging from the ubiquitous eukaryotic cell design to the more specific cellular forms of spirochetes, cyanobacteria, ciliates, heliozoans, amoeba, and many others. The cellular traits that constitute these forms require an evolutionary explanation. Ultimately, the persistence of a cellular trait depends on its net contribution to fitness, a quantitative measure. Independent of any positive effects, a cellular trait exhibits a baseline energetic cost that needs to be accounted for when quantitatively examining its net fitness effect. Here, we explore how the energetic burden introduced by a cellular trait quantitatively affects cellular fitness, describe methods for determining cell energy budgets, summarize the costs of cellular traits across the tree of life, and examine how the fitness impacts of these energetic costs compare to other evolutionary forces and trait benefits. 
    more » « less
  4. Abstract Intraspecific trait variation (ITV) is a widespread feature of life, but it is an open question how ITV affects between‐species coexistence. Recent theoretical studies have produced contradictory results, with ITV promoting coexistence in some models and undermining coexistence in others. Here we review recent work and propose a new conceptual framework to explain how ITV affects coexistence between two species. We propose that all traits belong to one of two categories: niche traits and hierarchical traits. Niche traits determine an individual's location on a niche axis or trade‐off axis, such that changing an individual's trait makes it perform better in some circumstances and worse in others. Hierarchical traits represent cases where conspecifics with different traits have the same niche, but one performs better under all circumstances, such that there are winners and losers. Our framework makes predictions for how intraspecific variation in each type of trait affects coexistence by altering stabilizing mechanisms and fitness differences. For example, ITV in niche traits generally weakens the stabilizing mechanism, except when it generates a generalist–specialist trade‐off. On the other hand, hierarchical traits tend to impact competitors differently, such that ITV in one species will strengthen the stabilizing mechanism while ITV in the other species will weaken the mechanism. We re‐examine 10 studies on ITV and coexistence, along with four novel models, and show that our framework can explain why ITV promotes coexistence in some models and undermines coexistence in others. Overall, our framework reconciles what were previously considered to be contrasting results and provides both theoretical and empirical directions to study the effect of ITV on species coexistence. 
    more » « less
  5. Abstract Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait‐based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon‐specific and community‐wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition‐induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait‐based analytical approaches to inform how ecological processes of microbial communities influence soil functioning. 
    more » « less