skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing the Flow Electrooxidation of Glycerol Using Statistical Design of Experiments
Many studies have investigated the conversion of biomass derivatives to value-added products. However, the influence of different factors on the reaction outcomes of these often-complex systems is not well understood. Herein, a statistical design of experiments—specifically, response surface methodology—is applied to the glycerol electrooxidation reaction in a flow electrolyzer. Four operational variables (glycerol concentration, NaOH concentration, flow rate, and catalyst loading) were investigated for their effects on measurable responses of the electrochemical reaction: current density and Faradaic efficiency to a given product. Independent optimizations of current density and Faradaic efficiency, as well as simultaneous optimization of both, were investigated. Each optimization was evaluated using response surface coefficients to analyze sensitivity and simulated runs to visualize the parameter space. These evaluations revealed contradictions in operating conditions required to simultaneously maximize current density and Faradaic efficiency to C3products glycerate and lactate, leading to low current densities and Faradaic efficiencies. However, simultaneously maximizing current density and Faradaic efficiency to C1product formate led to high current densities and Faradaic efficiencies. These insights guide tuning GEOR production to maximize overall reactor performance. Furthermore, this study outlines a framework for experimental evaluation and optimization of other electrolysis chemistries.  more » « less
Award ID(s):
2029326 2309037
PAR ID:
10515916
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
6
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 063506
Size(s):
Article No. 063506
Sponsoring Org:
National Science Foundation
More Like this
  1. Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes. 
    more » « less
  2. Abstract The conversion of waste CO2to value‐added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non‐aqueous solvents like methanol allows for higher CO2availability and novel products. In this work, the electrochemistry of CO2reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half‐reaction. The selectivity among methyl formate (a product unique to reduction of CO2in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at −2.0 V vs. Ag/AgCl. 
    more » « less
  3. Abstract The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V. 
    more » « less
  4. Abstract Copper (Cu) is the most attractive electrocatalyst for CO2reduction to multi‐carbon (C2+) products with high economic value in considerable amounts. However, the rational design of a structurally stable Cu‐based catalyst that can achieve high activity and stability towards C2+products remain a grand challenge. Here, a highly stable nickel oxygenate/Cu electrocatalyst is developed with abundant NiOOH/Cu interfaces by in situ electrochemical reconstruction. The nickel oxygenate/Cu electrocatalyst achieves a superior Faradaic efficiency of 86.3 ± 3.0% and a record partial current density of 2085 A g−1for C2+products with long‐term stability. In situ experimental and theoretical studies demonstrates that the exceptional performance in generating C2+products is attributed to the presence of the NiOOH/Cu interfaces which increase *CO coverage, lower energy barrier for *CO coupling and stabilize *OCCO simultaneously. This work provides new insights into the rational design of electrocatalysts to achieve stable and efficient electrocatalytic CO2reduction capabilities. 
    more » « less
  5. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less