skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Endocrine flexibility can facilitate or constrain the ability to cope with global change
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.  more » « less
Award ID(s):
2141693 2128337
PAR ID:
10515955
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Philosophical Transactions of the Royal Society B
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
379
Issue:
1898
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organisms are experiencing higher average temperatures and greater temperature variability because of anthropogenic climate change. Some populations respond to changes in temperature by shifting their ranges or adjusting their phenotypes via plasticity and/or evolution, while others go extinct. Predicting how populations will respond to temperature changes is challenging because extreme and unpredictable climate changes will exert novel selective pressures. For this reason, there is a need to understand the physiological mechanisms that regulate organismal responses to temperature changes. In vertebrates, glucocorticoid hormones mediate physiological and behavioral responses to environmental stressors and thus are likely to play an important role in how vertebrates respond to global temperature changes. Glucocorticoids have cascading effects that influence the phenotype and fitness of individuals, and some of these effects can be transmitted to offspring via trans- or intergenerational effects. Consequently, glucocorticoid-mediated responses could affect populations and could even be a powerful driver of rapid evolutionary change. Here, we present a conceptual framework that outlines how temperature changes due to global climate change could affect population persistence via glucocorticoid responses within and across generations (via epigenetic modifications). We briefly review glucocorticoid physiology, the interactions between environmental temperatures and glucocorticoid responses, and the phenotypic consequences of glucocorticoid responses within and across generations. We then discuss possible hypotheses for how glucocorticoid-mediated phenotypic effects might impact fitness and population persistence via evolutionary change. Finally, we pose pressing questions to guide future research. Understanding the physiological mechanisms that underpin the responses of vertebrates to elevated temperatures will help predict population-level responses to the changing climates we are experiencing. 
    more » « less
  2. Abstract Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution. 
    more » « less
  3. null (Ed.)
    We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation. 
    more » « less
  4. Abstract Climate change is causing habitat salinity to transform at unprecedented rates across the globe. While much of the research on climate change has focused on rapid shifts in temperature, far less attention has focused on the effects of changes in environmental salinity. Consequently, predictive studies on the physiological, evolutionary, and migratory responses of organisms and populations to the threats of salinity change are relatively lacking. This omission represents a major oversight, given that salinity is among the most important factors that define biogeographic boundaries in aquatic habitats. In this perspective, we briefly touch on responses of organisms and populations to rapid changes in salinity occurring on contemporary time scales. We then discuss factors that might confer resilience to certain taxa, enabling them to survive rapid salinity shifts. Next, we consider approaches for predicting how geographic distributions will shift in response to salinity change. Finally, we identify additional data that are needed to make better predictions in the future. Future studies on climate change should account for the multiple environmental factors that are rapidly changing, especially habitat salinity. 
    more » « less
  5. ABSTRACT Evolutionary responses to climate change may incur trade‐offs due to energetic constraints and mechanistic limitations, which are both influenced by environmental context. Adaptation to one stressor may result in life history trade‐offs, canalization of phenotypic plasticity, and the inability to tolerate other stressors, among other potential costs. While trade‐offs incurred during adaptation are difficult to detect in natural populations, experimental evolution can provide important insights by measuring correlated responses to selection as populations adapt to changing environments. However, studies testing for trade‐offs have generally lagged behind the growth in the use of experimental evolution in climate change studies. We argue that the important insights generated by the few studies that have tested for trade‐offs make a strong case for including these types of measurements in future studies of climate adaptation. For example, there is emerging consensus from experimental evolution studies that tolerance and tolerance plasticity trade‐offs are an often‐observed outcome of adaptation to anthropogenic change. In recent years, these types of studies have been strengthened by the use of sequencing of experimental populations, which provides promising new avenues for understanding the molecular mechanisms underlying observed phenotypic trade‐offs. 
    more » « less