skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Harnessing Redox Polymer Dynamics for Enhanced Glucose–Oxygen Coupling in Dual Biosensing and Therapeutic Applications
The burgeoning field of continuous glucose monitoring (CGM) for diabetes management faces significant challenges, particularly in achieving precise and stable biosensor performance under changing environmental conditions such as varying glucose concentrations and O2 levels. To address this, we present a novel biosensor based on the electroless coupling of glucose oxidation catalyzed by flavin-dependent glucose dehydrogenase (FAD-GDH) and O2 reduction catalyzed by bilirubin oxidase (BOD) via a redox polymer, dimethylferrocene-modified linear poly(ethylenimine), FcMe2-LPEI. Initial cyclic voltammetry tests confirm the colocalization of both enzymatic reactions within the potential range of the polymer, indicating an effective electron shuttle mechanism. As a result, we created a hybrid biosensor that operates at open-circuit potential (OCP). It can detect glucose concentrations of up to 100 mM under various O2 conditions, including ambient air. This resulted from optimizing the enzyme ratio to 120 ± 10 mUBOD·UFAD-GDH–1·atmO2–1. This biosensor is highly sensitive, a crucial feature for CGM applications. This distinguishes it from FAD-GDH traditional biosensors, which require a potential to be applied to measure glucose concentrations up to 30 mM. In addition, this biosensor demonstrates the ability to function as a noninvasive, external device that can adapt to changing glucose levels, paving the way for its use in diabetes care and, potentially, personalized healthcare devices. Furthermore, by leveraging the altered metabolic pathways in tumor cells, this system architecture opened up new avenues for targeted glucose scavenging and O2 reduction in cancer therapy.  more » « less
Award ID(s):
2406605 2154206
PAR ID:
10516027
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Sensors
ISSN:
2379-3694
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Biosensor data have the potential to improve disease control and detection. However, the analysis of these data under free-living conditions is not feasible with current statistical techniques. To address this challenge, we introduce a new functional representation of biosensor data, termed the glucodensity, together with a data analysis framework based on distances between them. The new data analysis procedure is illustrated through an application in diabetes with continuous-time glucose monitoring (CGM) data. In this domain, we show marked improvement with respect to state-of-the-art analysis methods. In particular, our findings demonstrate that (i) the glucodensity possesses an extraordinary clinical sensitivity to capture the typical biomarkers used in the standard clinical practice in diabetes; (ii) previous biomarkers cannot accurately predict glucodensity, so that the latter is a richer source of information and; (iii) the glucodensity is a natural generalization of the time in range metric, this being the gold standard in the handling of CGM data. Furthermore, the new method overcomes many of the drawbacks of time in range metrics and provides more in-depth insight into assessing glucose metabolism. 
    more » « less
  2. A disposable paper-based glucose biosensor with direct electron transfer (DET) of glucose oxidase (GOX) was developed through simple covalent immobilization of GOX on a carbon electrode surface using zero-length cross-linkers. This glucose biosensor exhibited a high electron transfer rate (ks, 3.363 s−1) as well as good affinity (km, 0.03 mM) for GOX while keeping innate enzymatic activities. Furthermore, the DET-based glucose detection was accomplished by employing both square wave voltammetry and chronoamperometric techniques, and it achieved a glucose detection range from 5.4 mg/dL to 900 mg/dL, which is wider than most commercially available glucometers. This low-cost DET glucose biosensor showed remarkable selectivity, and the use of the negative operating potential avoided interference from other common electroactive compounds. It has great potential to monitor different stages of diabetes from hypoglycemic to hyperglycemic states, especially for self-monitoring of blood glucose. 
    more » « less
  3. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders. 
    more » « less
  4. Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes. 
    more » « less
  5. OBJECTIVETo determine the benefit of starting continuous glucose monitoring (CGM) in adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) with regard to longer-term glucose control and serious clinical events. RESEARCH DESIGN AND METHODSA retrospective observational cohort study within the Veterans Affairs Health Care System was used to compare glucose control and hypoglycemia- or hyperglycemia-related admission to an emergency room or hospital and all-cause hospitalization between propensity score overlap weighted initiators of CGM and nonusers over 12 months. RESULTSCGM users receiving insulin (n = 5,015 with T1D and n = 15,706 with T2D) and similar numbers of nonusers were identified from 1 January 2015 to 31 December 2020. Declines in HbA1c were significantly greater in CGM users with T1D (−0.26%; 95% CI −0.33, −0.19%) and T2D (−0.35%; 95% CI −0.40, −0.31%) than in nonusers at 12 months. Percentages of patients achieving HbA1c <8 and <9% after 12 months were greater in CGM users. In T1D, CGM initiation was associated with significantly reduced risk of hypoglycemia (hazard ratio [HR] 0.69; 95% CI 0.48, 0.98) and all-cause hospitalization (HR 0.75; 95% CI 0.63, 0.90). In patients with T2D, there was a reduction in risk of hyperglycemia in CGM users (HR 0.87; 95% CI 0.77, 0.99) and all-cause hospitalization (HR 0.89; 95% CI 0.83, 0.97). Several subgroups (based on baseline age, HbA1c, hypoglycemic risk, or follow-up CGM use) had even greater responses. CONCLUSIONSIn a large national cohort, initiation of CGM was associated with sustained improvement in HbA1c in patients with later-onset T1D and patients with T2D using insulin. This was accompanied by a clear pattern of reduced risk of admission to an emergency room or hospital for hypoglycemia or hyperglycemia and of all-cause hospitalization. 
    more » « less