skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Larval stages of the Antarctic dragonfish Akarotaxis nudiceps (Waite, 1916), with comments on the larvae of the morphologically similar species Prionodraco evansii Regan 1914 (Notothenioidei: Bathydraconidae)
Abstract The notothenioid family Bathydraconidae is a poorly understood family of fishes endemic to the Southern Ocean. There is especially little information onAkarotaxis nudiceps, one of the deepest‐dwelling and least fecund bathydraconid species. Using genetic and morphological data, we document and describe the larval stages of this unique species, offer a novel characteristic to distinguish it from the morphologically similar bathydraconidPrionodraco evansiiand use the sampling locations to infer a possible spawning area ofA. nudicepsalong the western Antarctic Peninsula. These results provide important baseline information for locating, identifying and studying the biology ofA. nudiceps, an important component of the Southern Ocean ecosystem.  more » « less
Award ID(s):
2026045 2224611
PAR ID:
10516053
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
fsbi
Date Published:
Journal Name:
Journal of Fish Biology
Volume:
102
Issue:
2
ISSN:
0022-1112
Page Range / eLocation ID:
395 to 402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea‐ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under‐ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immatureB. saidaand the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth ofB. saidain this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immatureB. saidamay be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival ofB. saidawill not depend on prey presence alone, but also on prey catchability, digestibility, and energy content. 
    more » « less
  2. Abstract Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood‐feeding, they must excrete water and ions, but when off‐host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane‐bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP‐like genes from the deer tickIxodes scapularisand used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP‐like sequences (including those ofI. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full‐length cDNA ofI. scapularisaquaporin 1 (IsAQP1) and expressed it heterologously inXenopusoocytes to functionally characterize its permeability to water and solutes. Additionally, we examinedIsAQP1expression across different life stages and adult female organs. We foundIsAQP1is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs,IsAQP1has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggestIsAQP1plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts. 
    more » « less
  3. ABSTRACT The southern range limit of the invasive Asian shore crab,Hemigrapsus sanguineus,along the United States East coast is further north than expected based on its native distribution. We investigated potential factors that may limit the southward spread of this species along the Mid‐Atlantic and South Atlantic bights from Virginia to South Carolina, including metabolic constraints, food availability, and habitat limitation. We searched sites identified as potential habitat forH. sanguineusto verify the presence/absence of the crab, measured the metabolic rates of crabs at their current southern range edge for comparison with previous measurements made further north on the New Hampshire coast, used digital images captured at each site to determine whether the availability of potential food decreases south of the current range limit, and used Google Earth to measure distances between suitable habitat patches north and south of the current range limit to determine whether habitat availability limits the range expansion toward the south. We encountered the species ~64 km further south than the documented range limit at Oregon Inlet, North Carolina. We found no difference in metabolism between crabs at the southern range edge compared to crabs from New Hampshire, and no consistent difference in the abundance of available food between sites north and south of the current range limit. However, we found greater distances between suitable hard‐substrate sites south of the current range limit than between sites found within the current range. We suggest that the availability of suitable habitat is the primary driver limiting the further southward range expansion ofH. sanguineus. 
    more » « less
  4. SUMMARY Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea maysL.), one of the most highly produced cereal crops worldwide, would have a global impact on human health.PLASTID TERMINAL OXIDASE(PTOX) genes play an important role in carotenoid metabolism; however, the possible function ofPTOXin carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maizePTOXlocus by forward‐ and reverse‐genetic analyses. While most higher plant species possess a single copy of thePTOXgene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid‐deficient phenotype. We identified mutations in thePTOXgenes as being causal of the classic maize mutant,albescent1. Remarkably, overexpression ofZmPTOX1significantly improved the content of carotenoids, especially β‐carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maizePTOXlocus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine‐tuning the expression of this gene could improve the nutritional value of cereal grains. 
    more » « less
  5. Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles. 
    more » « less