skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Wireless Multimodal Physiological Monitoring ASIC for Animal Health Monitoring Injectable Devices
Award ID(s):
2319389 2037328 2319060 1554367 1160483
PAR ID:
10516129
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Biomedical Circuits and Systems
ISSN:
1932-4545
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In real-time decision making and runtime monitoring applications, declarative languages are commonly used as they facilitate modular high-level specifications with the compiler guaranteeing evaluation over data streams in an efficient and incremental manner. We introduce the model ofData Transducersto allowmodularcompilation of queries over streaming data. A data transducer maintains a finite set of data variables and processes a sequence of tagged data values by updating its variables using an allowed set of operations. The model allows unambiguous nondeterminism, exponentially succinct control, and combining values from parallel threads of computation. The semantics of the model immediately suggests an efficient streaming algorithm for evaluation. The expressiveness of data transducers coincides withstreamable regular transductions, a robust and streamable class of functions characterized by MSO-definable string-to-DAG transformations with no backward edges. We show that the novel features of data transducers, unlike previously studied transducers, make them as succinct as traditional imperative code for processing data streams, but the structuring of the transition function permits modular compilation. In particular, we show that operations such as parallel composition, union, prefix-sum, and quantitative analogs of combinators for unambiguous parsing, can be implemented by natural and succinct constructions on data transducers. To illustrate the benefits of such modularity in compilation, we define a new language for quantitative monitoring, QRE-Past, that integrates features of past-time temporal logic and quantitative regular expressions. While this combination allows a natural specification of a cardiac arrhythmia detection algorithm in QRE-Past, compilation of QRE-Past specifications into efficient monitors comes for free thanks to succinct constructions on data transducers. 
    more » « less
  2. Variational autoencoders have been recently proposed for the problem of process monitoring. While these works show impressive results over classical methods, the proposed monitoring statistics often ignore the inconsistencies in learned lower-dimensional representations and computational limitations in high-dimensional approximations. In this work, we first manifest these issues and then overcome them with a novel statistic formulation that increases out-of-control detection accuracy without compromising computational efficiency. We demonstrate our results on a simulation study with explicit control over latent variations, and a real-life example of image profiles obtained from a hot steel rolling process. 
    more » « less
  3. null (Ed.)
    Parallel filesystems (PFSs) are one of the most critical high-availability components of High Performance Computing (HPC) systems. Most HPC workloads are dependent on the availability of a POSIX compliant parallel filesystem that provides a globally consistent view of data to all compute nodes of a HPC system. Because of this central role, failure or performance degradation events in the PFS can impact every user of a HPC resource. There is typically insufficient information available to users and even many HPC staff to identify the causes of these PFS events, impeding the implementation of timely and targeted remedies to PFS issues. The relevant information is distributed across PFS servers; however, access to these servers is highly restricted due to the sensitive role they play in the operations of a HPC system. Additionally, the information is challenging to aggregate and interpret, relegating diagnosis and treatment of PFS issues to a select few experts with privileged system access. To democratize this information, we are developing an open-source and user-facing Parallel FileSystem TRacing and Analysis SErvice (PFSTRASE) that analyzes the requisite data to establish causal relationships between PFS activity and events detrimental to stability and performance. We are implementing the service for the open-source Lustre filesystem, which is the most commonly used PFS at large-scale HPC sites. Server loads for specific PFS I/O operations (IOPs) will be measured and aggregated by the service to automatically estimate an effective load generated by every client, job, and user. The infrastructure provides a realtime, user accessible text-based interface and a publicly accessible web interface displaying both real-time and historical data. To democratize this information, we are developing an open-source and user-facing Parallel FileSystem TRacing and Analysis SErvice (PFSTRASE) that analyzes the requisite data to establish causal relationships between PFS activity and events detrimental to stability and performance. We are implementing the service for the open-source Lustre filesystem, which is the most commonly used PFS at large-scale HPC sites. Server loads for specific PFS I/O operations (IOPs) will be measured and aggregated by the service to automatically estimate an effective load generated by every client, job, and user. The infrastructure provides a realtime, user accessible text-based interface and a publicly accessible web interface displaying both real-time and historical data. 
    more » « less