skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward a better monitoring statistic for profile monitoring via variational autoencoders
Variational autoencoders have been recently proposed for the problem of process monitoring. While these works show impressive results over classical methods, the proposed monitoring statistics often ignore the inconsistencies in learned lower-dimensional representations and computational limitations in high-dimensional approximations. In this work, we first manifest these issues and then overcome them with a novel statistic formulation that increases out-of-control detection accuracy without compromising computational efficiency. We demonstrate our results on a simulation study with explicit control over latent variations, and a real-life example of image profiles obtained from a hot steel rolling process.  more » « less
Award ID(s):
1830363 1922739
PAR ID:
10291551
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Quality Technology
ISSN:
0022-4065
Page Range / eLocation ID:
1 to 46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Electrospinning is a promising process to fabricate functional parts from macrofibers and nanofibers of bio-compatible materials including collagen, polylactide (PLA), and polyacrylonitrile (PAN). However, the functionality of the produced parts highly rely on quality, repeatability, and uniformity of the electrospun fibers. Due to the variations in material composition, process settings, and ambient conditions, the process suffers from large variations. In particular, the fiber formation in the stable regime (i.e., Taylor cone and jet) and its propagation to the substrate plays the most significant role in the process stability. This work aims to designing a fast process monitoring tool from scratch for monitoring the dynamic electrospinning process based on the Taylor cone and jet videos. Nevertheless, this is challenging since the videos are of high frequency and high dimension, and the monitoring statistics may not have a parametric distribution. To achieve this goal, a framework integrating image analysis, sketch-based tensor decomposition, and non-parametric monitoring, is proposed. In particular, we use Tucker tensor-sketch (Tucker-TS) based tensor decomposition to extract the sparse structure representations of the videos. Additionally, the extracted monitoring variables are non-normally distributed, hence non-parametric bootstrap Hotelling T2 control chart is deployed to handle this issue during the monitoring. The framework is demonstrated by electrospinning a PAN-based polymeric solution. Finally, it is demonstrated that the proposed framework, which uses Tucker-TS, largely outperformed the computational speed of the alternating least squares (ALS) approach for the Tucker tensor decomposition, i.e., Tucker-ALS, in various anomaly detection tasks while keeping the comparable anomaly detection accuracy. 
    more » « less
  2. Physical sensing is increasingly implemented in modern industries to improve information visibility, which generates real-time signals that are spatially distributed and temporally varying. These signals are often nonlinear and nonstationary in the high-dimensional space, which pose significant challenges to monitoring and control of complex systems. Therefore, this article presents a new “virtual sensing” approach that places imaginary sensors at different locations in signaling trajectories to monitor evolving dynamics within the signal space. First, we propose self-organizing principles to investigate distributional and topological features of nonlinear signals for optimal placement of imaginary sensors. Second, we design and develop the network model to represent real-time flux dynamics among these virtual sensors, in which each node represents a virtual sensor, while edges signify signal flux among sensors. Third, the establishment of a network model as well as the notion of transition uncertainty enable a fine-grained view into system dynamics and then extend a new Flux Rank (FR) algorithm for process monitoring. Experimental results show that the network FR methodology not only delineate real-time flux patterns in nonlinear signals, but also effectively monitor spatiotemporal changes in the dynamics of nonlinear dynamical systems. 
    more » « less
  3. This paper discusses the relationship between monitoring, control, conscious awareness, and attention in language production. Instead of focusing on a speci昀椀c theory, I will examine these relationships within a framework that accommodates multiple (complementary) monitoring views, and discuss key differences between situations where competition is resolved internally vs. those that recruit external control. The takeaway message is that production performance is optimized by self-regulating monitoring-control loops, which operate largely subconsciously, but conscious awareness can be —and often is— triggered by the monitor. When triggered, in conjunction with the control system, such awareness can lead to attentional control of both the primary production process, as well as the monitoring process. I will also touch upon the repair process and its relation to these issues, and end by discussing some of the open questions as possible avenues for future research. 
    more » « less
  4. We propose a predictive runtime monitoring approach for linear systems with stochastic disturbances. The goal of the monitor is to decide if there exists a possible sequence of control inputs over a given time horizon to ensure that a safety property is maintained with a sufficiently high probability. We derive an efficient algorithm for performing the predictive monitoring in real time, specifically for linear time invariant (LTI) systems driven by stochastic disturbances. The algorithm implicitly defines a control envelope set such that if the current control input to the system lies in this set, there exists a future strategy over a time horizon consisting of the next N steps to guarantee the safety property of interest. As a result, the proposed monitor is oblivious of the actual controller, and therefore, applicable even in the presence of complex control systems including highly adaptive controllers. Furthermore, we apply our proposed approach to monitor whether a UAV will respect a “geofence” defined by a geographical region over which the vehicle may operate. To achieve this, we construct a data-driven linear model of the UAVs dynamics, while carefully modeling the uncertainties due to wind, GPS errors and modeling errors as time-varying disturbances. Using realistic data obtained from flight tests, we demonstrate the advantages and drawbacks of the predictive monitoring approach. 
    more » « less
  5. Scientific data, generated by computational models or from experiments, are typically results of nonlinear interactions among several latent processes. Such datasets are typically high-dimensional and exhibit strong temporal correlations. Better understanding of the underlying processes requires mapping such data to a low-dimensional manifold where the dynamics of the latent processes are evident. While nonlinear spectral dimensionality reduction methods, e.g., Isomap, and their scalable variants, are conceptually fit candidates for obtaining such a mapping, the presence of the strong temporal correlation in the data can significantly impact these methods. In this paper, we first show why such methods fail when dealing with dynamic process data. A novel method, Entropy-Isomap, is proposed to handle this shortcoming. We demonstrate the effectiveness of the proposed method in the context of understanding the fabrication process of organic materials. The resulting low-dimensional representation correctly characterizes the process control variables and allows for informative visualization of the material morphology evolution. 
    more » « less