skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessment of the partial saddle point approximation in field-theoretic polymer simulations
Field-theoretic simulations are numerical treatments of polymer field theory models that go beyond the mean-field self-consistent field theory level and have successfully captured a range of mesoscopic phenomena. Inherent in molecularly-based field theories is a “sign problem” associated with complex-valued Hamiltonian functionals. One route to field-theoretic simulations utilizes the complex Langevin (CL) method to importance sample complex-valued field configurations to bypass the sign problem. Although CL is exact in principle, it can be difficult to stabilize in strongly fluctuating systems. An alternate approach for blends or block copolymers with two segment species is to make a “partial saddle point approximation” (PSPA) in which the stiff pressure-like field is constrained to its mean-field value, eliminating the sign problem in the remaining field theory, allowing for traditional (real) sampling methods. The consequences of the PSPA are relatively unknown, and direct comparisons between the two methods are limited. Here, we quantitatively compare thermodynamic observables, order-disorder transitions, and periodic domain sizes predicted by the two approaches for a weakly compressible model of AB diblock copolymers. Using Gaussian fluctuation analysis, we validate our simulation observations, finding that the PSPA incorrectly captures trends in fluctuation corrections to certain thermodynamic observables, microdomain spacing, and location of order-disorder transitions. For incompressible models with contact interactions, we find similar discrepancies between the predictions of CL and PSPA, but these can be minimized by regularization procedures such as Morse calibration. These findings mandate caution in applying the PSPA to broader classes of soft-matter models and systems.  more » « less
Award ID(s):
2104255
PAR ID:
10516157
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
16
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The behavior of complex-Langevin field-theoretic simulations (CL-FTSs) of polymer liquids is sensitive to the nature of saddle-point field configurations, which are solutions of self-consistent field theory (SCFT). Recent work [Kang et al. Macromolecules 2024, 57, 3850] has shown that SCFT saddle-points with real fields are generally not isolated solutions but rather members of a low-dimensional family of continuously-connected complex-valued saddle-points sharing the same Hamiltonian value. We show that this behavior is a natural consequence of the analyticity and translational invariance of the Hamiltonian, which together demand its invariance under generalized translations by displacements with complex components. We also present a numerical algorithm that minimizes the deleterious effects of this generalized symmetry on the stability of CL-FTSs. 
    more » « less
  2. Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard–Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard–Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials. Removing this restriction on the non-bonded potentials will enable studies of a wide range of systems that require multi-body or more complex potentials. An alternative representation is the hybrid density-explicit auxiliary field theory (DE-AF), which retains both a density field and a conjugate auxiliary field for each species. While the DE-AF representation is not new, density-explicit field-theoretic simulations have yet to be developed. A major challenge is preserving the real and non-negative nature of the density field during stochastic evolution. To address this, we introduce positivity-preserving schemes that enable the first stable and efficient density-explicit field-theoretic simulations (DE-AF FTS). By applying the new method to a simple fluid, we find thermodynamically correct results at high densities, but the algorithm fails in the dilute regime. Nonetheless, DE-AF FTS is shown to be broadly applicable to dense fluid systems including a simple fluid with a three-body non-bonded potential, a homopolymer solution, and a diblock copolymer melt. 
    more » « less
  3. Chiral building blocks have the ability to self-assemble and transfer chirality to larger hierarchical length scales, which can be leveraged for the development of novel nanomaterials. Chiral block copolymers, where one block is made completely chiral, are prime candidates for studying this phenomenon, but fundamental questions regarding the self-assembly are still unanswered. For one, experimental studies using different chemistries have shown unexplained diverging shifts in the order–disorder transition temperature. In this study, particle-based molecular simulations of chiral block copolymers in the disordered melt were performed to uncover the thermodynamic behavior of these systems. A wide range of helical models were selected, and several free energy calculations were performed. Specifically, we aimed to understand (1) the thermodynamic impact of changing the conformation of one block in chemically identical block copolymers and (2) the effect of the conformation on the Flory–Huggins interaction parameter, χ, when chemical disparity was introduced. We found that the effective block repulsion exhibits diverging behavior, depending on the specific conformational details of the helical block. Commonly used conformational metrics for flexible or stiff block copolymers do not capture the effective block repulsion because helical blocks are semiflexible and aspherical. Instead, pitch can quantitatively capture the effective block repulsion. Quite remarkably, the shift in χ for chemically dissimilar block copolymers can switch sign with small changes in the pitch of the helix. 
    more » « less
  4. The self-assembly of block polymers into well-ordered nanostructures underpins their utility across fundamental and applied polymer science, yet only a handful of equilibrium morphologies are known with the simplest AB-type materials. Here, we report the discovery of the A15 sphere phase in single-component diblock copolymer melts comprising poly(dodecyl acrylate)− block −poly(lactide). A systematic exploration of phase space revealed that A15 forms across a substantial range of minority lactide block volume fractions ( f L = 0.25 − 0.33) situated between the σ-sphere phase and hexagonally close-packed cylinders. Self-consistent field theory rationalizes the thermodynamic stability of A15 as a consequence of extreme conformational asymmetry. The experimentally observed A15−disorder phase transition is not captured using mean-field approximations but instead arises due to composition fluctuations as evidenced by fully fluctuating field-theoretic simulations. This combination of experiments and field-theoretic simulations provides rational design rules that can be used to generate unique, polymer-based mesophases through self-assembly. 
    more » « less
  5. Abstract A general algorithm is introduced to compute single‐chain partition functions in field‐theoretic simulations of polymers with nested tree‐like topologies, including self‐consistent field theory simulations that invoke the mean‐field approximation. The algorithm is an extension of a method used in a number of recent studies on the phase behavior of bottlebrush block copolymers. In those studies, the computational cost of computing single‐chain partition functions is reduced by aggregating the statistical weight of degenerate side arms. By extending this method to chains with arbitrary degrees of branching, the computational cost is reduced to scale with the total length of unique segments in the chain instead of the total length/mass of the entire chain. The method is first validated on a model dendrimer system by comparing results to coarse‐grained molecular dynamics simulations and also demonstrate its advantage over more conventional approaches to compute single‐chain partition functions. The algorithm is subsequently used to analyze the phase behavior of a molecularly informed field‐theoretic model of poly(butyl acrylate)‐graft‐poly(dodecyl acrylate) (pBA‐graft‐pDDA) copolymers in a dodecane solvent. The methodology can help advance field‐theoretic investigations of branched polymers by leveraging degeneracy in the chain to reduce computational cost and avoid the need to develop architecture‐specific algorithms. 
    more » « less