Abstract We study magnetotransport in conical helimagnet crystals using the nonequilibriun Boltzmann equation approach. Spin dependent magnetoresistance exhibits dramatic properties for high and low electron concentrations at different temperatures. For spin up electrons we find negative magnetoresistance despite only considering a single carrier type. For spin down electrons we observe giant magnetoresistance due to depletion of spin down electrons with an applied magnetic field. For spin up carriers, the magnetoresistance is negative, due to the increase in charge carriers with a magnetic field. In addition, we investigate the spin dependent Hall effect. If a magnetic field reaches some critical value for spin down electrons, giant Hall resistance occurs, i.e. Hall current vanishes. This effect is explained by the absence of spin down carriers. For spin up carriers, the Hall constant dramatically decreases with field, due to the increase in spin up electron density. Because of the giant spin dependent magnetoresistance and Hall resistivity, conical helimagnets could be useful in spin switching devices.
more »
« less
Compact remanence-free permanent magnet-based variable magnetic field source
We demonstrate a simple and compact variable magnetic field source based on the permanent cube magnet array approximating a Halbach cylinder. The large air gap area accommodates standard cryostat tails while providing a high uniformity and magnetic field stability of up to 0.5 T over regions of up to about a centimeter. It eliminates magnetic remanence effects and produces reproducible fields without the need for feedback. Thanks to the low cost and exceptional energy efficiency, it provides an accessible solution for modest magnetic field requirements in a wide range of research applications.
more »
« less
- Award ID(s):
- 2005786
- PAR ID:
- 10516178
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 95
- Issue:
- 3
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-voltage transmission lines are the backbone of modern power systems, facilitating the delivery of electricity from diverse generation sources, including conventional power plants and renewable energy systems, to consumers. As the electricity demand grows, the expansion of transmission infrastructure becomes essential to connecting new consumers with power suppliers. However, traditional transmission lines require significant right-of-way, posing challenges related to land use and environmental impact, as well as limited loadability. To address this issue, compact unconventional High Surge Impedance Loading (HSIL) transmission lines offer a viable solution by reducing right-of-way requirements while enhancing line natural power, mainly leading to less voltage drop. Before the implementation of the new unconventional HSIL lines, it is crucial to assess key parameters, such as magnetic field distribution under the lines, to ensure compliance with environmental and safety standards. This paper presents a numerical analysis of the magnetic field characteristics of compact unconventional HSIL transmission lines with different subconductor configurations. The results show that the proposed HSIL designs can reduce the magnetic field at ground level by up to 71.74% compared to a conventional 500 kV line near the center, as well as by up to 74% at the right-of-way edge, while maintaining magnetic field levels well below the limits set by ICNIRP and state-specific regulations. This study evaluates the magnetic field distribution within the right-of-way, providing insights into the electromagnetic performance and potential implications for transmission line design.more » « less
-
Abstract This study compares the growth cycles and spatial distribution of dust cloud for titania and carbonaceous dusty nanoparticles in capacitively coupled radiofrequency plasmas, with and without the presence of a weak magnetic field of approximately 500 Gauss. Findings on cycle time, growth rate, and spatial distribution of dust cloud are discussed. The growth of nanoparticles in these plasmas is cyclic, with particles reaching their maximum size and subsequently moving out of the plasma, followed by the generation of a new particle growth cycle. The presence of the magnetic field speeds up the growth cycle in both plasma. The magnetic field also makes the spatial distribution of the two dust cloud different from each other. Langmuir probe measurement of the background plasma parameters such as electron temperature and floating potential reveal radial variations in floating potential but not electron temperature. Furthermore, the magnetic field changes the radial variation of floating potential. These measurements, however, are not sufficient to explain why the two dust clouds appear differently. It is possible that the differences occur due to a gradient in the radial distribution of the magnetic field.more » « less
-
α -MnTe is an antiferromagnetic semiconductor with above room temperature TN = 310 K, which is promising for spintronic applications. Recently, it was reported to be an altermagnet, containing bands with momentum-dependent spin splitting; time-resolved experimental probes of MnTe are, therefore, important both for understanding novel magnetic properties and potential device applications. We investigate ultrafast spin dynamics in epitaxial MnTe(001)/InP(111) thin films using pump-probe magneto-optical measurements in the Kerr configuration. At room temperature, we observe an oscillation mode at 55 GHz that does not appear at zero magnetic field. Combining field and polarization dependence, we identify this mode as a magnon, likely originating from inverse stimulated Raman scattering. Magnetic field-dependent oscillations persist up to at least 335 K, which could reflect coupling to known short-range magnetic order in MnTe above TN. Additionally, we observe two optical phonons at 3.6 and 4.2 THz, which broaden and redshift with increasing temperature.more » « less
-
ABSTRACT Magnetic fields provide an important probe of the thermal, material, and structural history of planetary and sub-planetary bodies. Core dynamos are a potential source of magnetic fields for differentiated bodies, but evidence of magnetization in undifferentiated bodies requires a different mechanism. Here, we study the amplified field provided by the stellar wind to an initially unmagnetized body using analytic theory and numerical simulations, employing the resistive magnetohydrodynamic AstroBEAR adaptive mesh refinement multiphysics code. We obtain a broadly applicable scaling relation for the peak magnetization achieved once a wind advects, piles-up, and drapes a body with magnetic field, reaching a quasi-steady state. We find that the dayside magnetic field for a sufficiently conductive body saturates when it balances the sum of incoming solar wind ram, magnetic, and thermal pressures. Stronger amplification results from pile-up by denser and faster winds. Careful quantification of numerical diffusivity is required for accurately interpreting the peak magnetic field strength from simulations, and corroborating with theory. As specifically applied to the Solar system, we find that early solar wind-induced field amplification is a viable source of magnetization for observed paleointensities in meteorites from some undifferentiated bodies. This mechanism may also be applicable to other Solar system bodies, including metal-rich bodies to be visited in future space missions such as the asteroid (16) Psyche.more » « less
An official website of the United States government

