Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%.
more »
« less
Computational Sensor Fingerprints
Analysis of imaging sensors is one of the most reliable photo forensic techniques, but it is increasingly chal- lenged by complex image processing in modern cameras. The underlying photo response non-uniformity (PRNU) is distilled into a static sensor fingerprint unique for each device. This makes it easy to estimate and spoof and limits its reliability in face of sophisticated attackers. We propose to exploit computa- tional capabilities of emerging intelligent vision sensors to design next-generation computational sensor fingerprints. Such sensors allow for running neural network inference directly on raw pixels, which enables end-to-end optimization of the entire photo acquisition and distribution pipeline. Control over fingerprint generation allows for adaptation to various requirements and threat models. In this study we provide a detailed assessment of security properties and evaluate two approaches to prevent spoofing: fingerprint generation based on local image content and adversarial training. We found that adversarial training is currently impractical, but content fingerprints deliver good per- formance in the considered cross-domain (RAW-RGB) setting and could provide robust best-effort protection against photo manip- ulation. Moreover, computational fingerprints can alleviate other limitations of PRNU, e.g., its limited reliability for dark/texture content and expensive fingerprint storage that hinders scalability. To enable this line of work, we developed a novel open-source and high-fidelity simulation environment for modeling photo acquisi- tion and distribution pipelines (https://github.com/pkorus/neural- imaging).
more »
« less
- Award ID(s):
- 1909488
- PAR ID:
- 10516337
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Information Forensics and Security
- Volume:
- 17
- ISSN:
- 1556-6013
- Page Range / eLocation ID:
- 2508 to 2523
- Subject(s) / Keyword(s):
- Imaging, image forensics, image sensors, watermarking.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reliably identifying and authenticating smart- phones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smart- phone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Au- thentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%.more » « less
-
Physically unclonable hardware fingerprints can be used for device authentication. The photo-response non-uniformity (PRNU) is the most reliable hardware fingerprint of digital cameras and can be conveniently extracted from images. However, we find image post-processing software may introduce extra noise into images. Part of this noise remains in the extracted PRNU fingerprints and is hard to be eliminated by traditional approaches, such as denoising filters. We define this noise as software noise, which pollutes PRNU fingerprints and interferes with authenticating a camera armed device. In this paper, we propose novel approaches for fingerprint matching, a critical step in device authentication, in the presence of software noise. We calculate the cross correlation between PRNU fingerprints of different cameras using a test statistic such as the Peak to Correlation Energy (PCE) so as to estimate software noise correlation. During fingerprint matching, we derive the ratio of the test statistic on two PRNU fingerprints of interest over the estimated software noise correlation. We denote this ratio as the fingerprint to software noise ratio (FITS), which allows us to detect the PRNU hardware noise correlation component in the test statistic for fingerprint matching. Extensive experiments over 10,000 images taken by more than 90 smartphones are conducted to validate our approaches, which outperform the state-of-the-art approaches significantly for polluted fingerprints. We are the first to study fingerprint matching with the existence of software noise.more » « less
-
Limited data availability is a challenging problem in the latent fingerprint domain. Synthetically generated fingerprints are vital for training data-hungry neural network-based algorithms. Conventional methods distort clean fingerprints to generate synthetic latent fingerprints. We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints. Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact- based fingerprints while possessing similar characteristics as real latent fingerprints. Additionally, we show that the generated fingerprints exhibit several qualities and styles, suggesting that the proposed method can generate multiple samples from a single fingerprint.more » « less
-
Traditional fingerprint authentication requires the acquisition of data through touch-based specialized sensors. However, due to many hygienic concerns including the global spread of the COVID virus through contact with a surface has led to an increased interest in contactless fingerprint image acquisition methods. Matching fingerprints acquired using contactless imaging against contact-based images brings up the problem of performing cross modal fingerprint matching for identity verification. In this paper, we propose a cost-effective, highly accurate and secure end-to-end contactless fingerprint recognition solution. The proposed framework first segments the finger region from an image scan of the hand using a mobile phone camera. For this purpose, we developed a cross-platform mobile application for fingerprint enrollment, verification, and authentication keeping security, robustness, and accessibility in mind. The segmented finger images go through fingerprint enhancement to highlight discriminative ridge-based features. A novel deep convolutional network is proposed to learn a representation from the enhanced images based on the optimization of various losses. The proposed algorithms for each stage are evaluated on multiple publicly available contactless databases. Our matching accuracy and the associated security employed in the system establishes the strength of the proposed solution framework.more » « less
An official website of the United States government

