- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Korus, Pawel (1)
-
Memon, Nasir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Analysis of imaging sensors is one of the most reliable photo forensic techniques, but it is increasingly chal- lenged by complex image processing in modern cameras. The underlying photo response non-uniformity (PRNU) is distilled into a static sensor fingerprint unique for each device. This makes it easy to estimate and spoof and limits its reliability in face of sophisticated attackers. We propose to exploit computa- tional capabilities of emerging intelligent vision sensors to design next-generation computational sensor fingerprints. Such sensors allow for running neural network inference directly on raw pixels, which enables end-to-end optimization of the entire photo acquisition and distribution pipeline. Control over fingerprint generation allows for adaptation to various requirements and threat models. In this study we provide a detailed assessment of security properties and evaluate two approaches to prevent spoofing: fingerprint generation based on local image content and adversarial training. We found that adversarial training is currently impractical, but content fingerprints deliver good per- formance in the considered cross-domain (RAW-RGB) setting and could provide robust best-effort protection against photo manip- ulation. Moreover, computational fingerprints can alleviate other limitations of PRNU, e.g., its limited reliability for dark/texture content and expensive fingerprint storage that hinders scalability. To enable this line of work, we developed a novel open-source and high-fidelity simulation environment for modeling photo acquisi- tion and distribution pipelines (https://github.com/pkorus/neural- imaging).more » « less
An official website of the United States government
