skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Joint Band Assignment and Beam Management Using Hierarchical Reinforcement Learning for Multi-Band Communication
Multi-band operation in wireless networks can improve data rates by leveraging the benefits of propagation in different frequency ranges. Distinctive beam management procedures in different bands complicate band assignment because they require considering not only the channel quality but also the associated beam management overhead. Reinforcement learning (RL) is a promising approach for multi-band operation as it enables the system to learn and adjust its behavior through environmental feedback. In this paper, we formulate a sequential decision problem to jointly perform band assignment and beam management. We propose a method based on hierarchical RL (HRL) to handle the complexity of the problem by separating the policies for band selection and beam management. We evaluate the proposed HRL-based algorithm on a realistic channel generated based on ray-tracing simulators. Our results show that the proposed approach outperforms traditional RL approaches in terms of reduced beam training overhead and increased data rates under a realistic vehicular channel.  more » « less
Award ID(s):
2225555 2153698 2435254
PAR ID:
10516357
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
ISSN:
0018-9545
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths for data transmission. Relaying will play an essential role in vehicular networks at higher frequency bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks, this paper address the question: how can the best relay be selected with minimal overhead from beam management? In this regard, we formulate a sequential decision problem to jointly optimize relay selection and beam management. We propose a joint relay selection and beam management policy based on deep reinforcement learning (DRL) using the Markov property of beam in- dices and beam measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the dynamic channel conditions and traffic patterns. Numeri- cal experiments demonstrate that the proposed algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency under fast-varying channels. 
    more » « less
  2. Multi-band transmission is a promising technical direction for spectrum and capacity expansion of existing optical networks. Due to the increase in the number of usable wavelengths in multi-band optical networks, the complexity of resource allocation problems becomes a major concern. Moreover, the transmission performance, spectrum width, and cost constraint across optical bands may be heterogeneous. Assuming a worst-case transmission margin in U, L, and C-bands, this paper investigates the problem of throughput maximization in multi-band optical networks, including the optimization of route, wavelength, and band assignment. We propose a low-complexity decomposition approach based on Column Generation (CG) to address the scalability issue faced by traditional methodologies. We numerically compare the results obtained by our CG-based approach to an integer linear programming model, confirming the near-optimal network throughput. Our results also demonstrate the scalability of the CG-based approach when the number of wavelengths increases, with the computation time in the magnitude order of 10 s for cases varying from 75 to 1200 wavelength channels per link in a 14-node network. Code of this publication is available at github.com/cchen000/CG-Multi-Band. 
    more » « less
  3. Electric vehicles (EVs) have been used in the ride-hailing system in recent years, which brings the electric fleet management problem (EFMP) critical. This paper aims to leverage multi-agent reinforcement learning (MARL) in EFMP. In particular, we focus on how EVs learn to manage battery charging, pick up and drop off passengers. We propose an integrated SUMO-Gym framework based on the SUMO simulator to capture EVs’ asynchronous decisionmaking regarding charging and ride-hailing in complex traffic environments. We adopt a hierarchical reinforcement learning (HRL) scheme, where each EV decides to get charged or pick up a passenger on the upper level and chooses a charging station or passenger on the lower level. We develop a learning algorithm for the HRL scheme to solve EFMP and present numerical results about the efficiency of our algorithm and policies EVs have learned in EFMP. Our codes are available at https://github.com/LovelyBuggies/SUMO-Gym, which provides an open-source environment for researchers to design traffic scenarios and test RL algorithms for EFMP. 
    more » « less
  4. Low overhead channel estimation based on compressive sensing (CS) has been widely investigated for hybrid wideband millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. The channel sparsifying dictionaries used in prior work are built from ideal array response vectors evaluated on discrete angles of arrival/departure. In addition, these dictionaries are assumed to be the same for all subcarriers, without considering the impacts of hardware impairments and beam squint. In this manuscript, we derive a general channel and signal model that explicitly incorporates the impacts of hardware impairments, practical pulse shaping functions, and beam squint, overcoming the limitations of mmWave MIMO channel and signal models commonly used in previous work. Then, we propose a dictionary learning (DL) algorithm to obtain the sparsifying dictionaries embedding hardware impairments, by considering the effect of beam squint without introducing it into the learning process. We also design a novel CS channel estimation algorithm under beam squint and hardware impairments, where the channel structures at different subcarriers are exploited to enable channel parameter estimation with low complexity and high accuracy. Numerical results demonstrate the effectiveness of the proposed DL and channel estimation strategy when applied to realistic mmWave channels. 
    more » « less
  5. Downlink reconfigurable intelligent surface (RIS)-assisted multi-input-multi-output (MIMO) systems are considered with far-field, near-field, and hybrid-far-near-field channels. According to the angular or distance information contained in the received signals, 1) a distance-based codebook is designed for near-field MIMO channels, based on which a hierarchical beam training scheme is proposed to reduce the training overhead; 2) a combined angular-distance codebook is designed for hybrid-far-near-field MIMO channels, based on which a two-stage beam training scheme is proposed to achieve alignment in the angular and distance domains separately. For maximizing the achievable rate while reducing the complexity, an alternating optimization algorithm is proposed to carry out the joint optimization iteratively. Specifically, the RIS coefficient matrix is optimized through the beam training process, the optimal combining matrix is obtained from the closed-form solution for the mean square error (MSE) minimization problem, and the active beamforming matrix is optimized by exploiting the relationship between the achievable rate and MSE. Numerical results reveal that: 1) the proposed beam training schemes achieve near-optimal performance with a significantly decreased training overhead; 2) compared to the angular-only far-field channel model, taking the additional distance information into consideration will effectively improve the achievable rate when carrying out beam design for near-field communications. 
    more » « less