Land stewards in dryland ecosystems across the western U.S. face challenges to manage the exotic grassBromus tectorum(cheatgrass), which is a poor forage, is difficult to remove, and increases risk of catastrophic fire. Managers may consider using indaziflam (Rejuvra™), a relatively new pre-emergent herbicide, which may reduce cheatgrass cover within drylands. However, few studies have explored the effects of indaziflam on non-target organisms. We tested how indaziflam application impacted cover and biomass of native and exotics within the plant community and composition and diversity of the soil microbiome by comparing untreated and treated arid shrubland sites in Boulder County, Colorado, USA. We found that indaziflam application decreased cheatgrass cover by as much as 80% and increased native plant cover by the same amount. Indaziflam application also was associated with increased soil nitrate (NO3−), decreased soil organic matter, and had a significant effect on the composition of the soil microbiome. Microbial community composition was significantly related to soil NO3−, soil organic matter, soil pH, and native species and cheatgrass biomass. An indicator species analysis suggested that indaziflam application shifted microbial communities. In untreated sites, ammonia-oxidizing bacteriaNitrosomonadaceaeand nitrogen-digestingOpitutaceaeand the fungiArticulospora proliferatawere found. While in treated sites, ammonia-oxidizing archaea which are associated with intact drylands,Nitrososphaeraceaeand toxin digesters and acidic-soil speciesSphingomonasandAcidimicrobiiawere significantly associated. Overall, these results demonstrate that indaziflam application can increase native plant recruitment, while also affecting soil properties and the soil microbiome. The findings from this study can be used to inform decision-making during dryland restoration planning process as indaziflam use may have benefits and unknown long-term consequences for the biogeochemistry and microbial ecology of the system.
more »
« less
Assessing the utility of SoilGrids250 for biogeographic inference of plant populations
Abstract Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and deeper understanding of plant distributions. Increased reliance on soil data calls for easily accessible data layers providing continuous soil predictions worldwide. Although SoilGrids provides a potentially useful source of predicted soil data for biogeographic applications, its accuracy for estimating the soil characteristics experienced by individuals in small‐scale populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 212 sites across the midwestern and eastern United States, sampling only at sites where there was a population of one of the 22 species inLobeliasect.Lobelia. We analyzed six physical and chemical characteristics in our samples and compared them with predicted values from SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better predicted by SoilGrids (R2: .25–.46) than were soil chemistry variables (carbon and nitrogen,R2 ≤ .01; pH,R2: .19). While SoilGrids predictions rarely matched actual field values for any variable, we were able to recover qualitative patterns relating species means and population‐level plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids and direct measures were much more consistent for soil texture (SpearmanrS = .74–.84; allp < .0001) and pH (rS = .61,p = .002) than for carbon and nitrogen (p > .35). Within the speciesL. siphilitica, a significant association, known from field measurements, between soil texture and population sex ratios could be detected using SoilGrids data, but only with large numbers of sites. Our results suggest that modeled soil texture values can be used with caution in biogeographic applications, such as species distribution modeling, but that soil carbon and nitrogen contents are currently unreliable, at least in the region studied here.
more »
« less
- PAR ID:
- 10516362
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Crop N decision support tools are typically based on either empirical relationships that lack mechanistic underpinnings or simulation models that are too complex to use on farms with limited input data. We developed an N mineralization model for corn that lies between these endpoints; it includes a mechanistic model structure reflecting microbial and texture controls on N mineralization but requires just a few simple inputs: soil texture soil C and N concentration and cover crop N content and carbon to nitgrogen ratio (C/N). We evaluated a previous version of the model with an independent dataset to determine the accuracy in predictions of unfertilized corn (Zea maysL.) yield across a wider range of soil texture, cover crop, and growing season precipitation conditions. We tested three assumptions used in the original model: (1) soil C/N is equal to 10, (2) yield does not need to be adjusted for growing season precipitation, and (3) sand content controls humification efficiency (ε). The best new model used measured values for soil C/N, had a summertime precipitation adjustment, and included both sand and clay content as predictors ofε(root mean square error [RMSE] = 1.43 Mg ha−1;r2 = 0.69). In the new model, clay has a stronger influence than sand onε, corresponding to lower predicted mineralization rates on fine‐textured soils. The new model had a reasonable validation fit (RMSE = 1.71 Mg ha−1;r2 = 0.56) using an independent dataset. Our results indicate the new model is an improvement over the previous version because it predicts unfertilized corn yield for a wider range of conditions.more » « less
-
Increasing warming and drought severity are projected for the Pacific Northwest (PNW) and are expected to negatively impact species composition and ecosystem function. In this study, we test the hypothesis that the impact of climatic stress (i.e., experimental warming and drought) on PNW grasslands are mediated by interactions between plant functional diversity and soil biogeochemical processes, including symbiotic nitrogen (N) fixation in legumes and free‐living asymbiotic nitrogen fixation (ANF) by soil microorganisms. To test this hypothesis, we measured the response of plants and soils to three years of warming (+2.5°C) and drought (−40% precipitation) in field experiments replicated at three different sites across a ∼520‐km latitudinal gradient. We observed interactive effects of warming and drought on functional diversity and soil biogeochemical properties, including both positive and negative changes in ANF. Although direct measurements of symbiotic nitrogen fixation (SNF) rates were not conducted, the observed variations in ANF, in conjunction with changes in legume cover, suggest a compensatory mechanism that may offset reductions in SNF. Generally, high ANF rates coincided with low legume cover, suggesting a connection between shifts in species composition and N cycling. Our ANF estimates were performed using isotopically labeled dinitrogen (15N2) in tandem with soil carbon (C), phosphorus (P) and iron (Fe), pH, and moisture content. Along the latitudinal drought severity gradient, ANF rates were correlated with changes in species composition and soil N, P, moisture, and pH levels. These results highlight the importance of soil‐plant‐atmosphere interactions in understanding the impacts of climatic stress on ecosystem composition and function.more » « less
-
Wiley (Ed.)ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth.more » « less
-
Abstract Large grazers modify vegetated ecosystems and are increasingly viewed as keystone species in trophic rewilding schemes. Yet, as their ecosystem influences are context‐dependent, a crucial challenge is identifying where grazers sustain, versus undermine, important ecosystem properties and their resilience.Previous work in diverse European saltmarshes found that, despite changing plant and invertebrate community structure, grazers do not suppress below‐ground properties, including soil organic carbon (SOC). We hypothesised that, in contrast, eastern US saltmarshes would be sensitive to large grazers as extensive areas are dominated by a single grass,Spartina alterniflora. We predicted that grazers would reduce above‐ and below‐groundSpartinabiomass, suppress invertebrate densities, shift soil texture and ultimately reduce SOC concentration.We tested our hypotheses using a replicated 51‐month large grazer (horse) exclusion experiment in Georgia, coupled with observations of 14 long‐term grazed sites, spanning ~1000 km of the eastern US coast.Grazer exclusion quickly led to increasedSpartinaheight, cover and flowering, and increased snail density. Changes in vegetation structure were reflected in modified soil texture (reduced sand, increased clay) and elevated root biomass, yet we found no response of SOC. Large grazer exclusion also reduced drought‐associated vegetation die‐off.We also observed vegetation shifts in sites along the eastern US seaboard where grazing has occurred for hundreds of years. Unlike in the exclusion experiment, long‐term grazing was associated with reduced SOC. A structural equation model implicated grazing by revealing reduced stem height as a key driver of reduced soil organic carbon.Synthesis: These results illustrate the context dependency of large grazer impacts on ecosystem properties in coastal wetlands. In contrast to well‐studied European marshes, eastern US marshes are dominated and structured by a single foundational grass species resulting in vegetation and soil properties being more sensitive to grazing. Coastal systems characterised by a single foundation species might be inherently vulnerable to large grazers and lack resilience in the face of other disturbances, underlining that frameworks to explain and predict large grazer impacts must account for geographic variation in ecosystem structure.more » « less
An official website of the United States government

