skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robotics in place and the places of robotics: productive tensions across human geography and human–robot interaction
Abstract Bringing human–robot interaction (HRI) into conversation with scholarship from human geography, this paper considers how socially interactive robots become important agents in the production of social space and explores the utility of core geographic concepts ofscaleandplaceto critically examine evolving robotic spatialities. The paper grounds this discussion through reflections on a collaborative, interdisciplinary research project studying the development and deployment of interactive museum tour-guiding robots on a North American university campus. The project is a collaboration among geographers, roboticists, a digital artist, and the directors/curators of two museums, and involves experimentation in the development of a tour-guiding robot with a “socially aware navigation system” alongside ongoing critical reflection into the socio-spatial context of human–robot interactions and their future possibilities. The paper reflects on the tensions between logics of control and contingency in robotic spatiality and argues that concepts of scale and place can help reflect on this tension in a productive way while calling attention to a broader range of stakeholders who should be included in robotic design and deployment.  more » « less
Award ID(s):
2121387
PAR ID:
10516412
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
AI & SOCIETY
Volume:
40
Issue:
3
ISSN:
0951-5666
Format(s):
Medium: X Size: p. 1361-1374
Size(s):
p. 1361-1374
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  2. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  3. null (Ed.)
    Today’s use of large-scale industrial robots is enabling extraordinary achievement on the assembly line, but these robots remain isolated from the humans on the factory floor because they are very powerful, and thus dangerous to be around. In contrast, the soft robotics research community has proposed soft robots that are safe for human environments. The current state of the art enables the creation of small-scale soft robotic devices. In this article we address the gap between small-scale soft robots and the need for human-sized safe robots by introducing a new soft robotic module and multiple human-scale robot configurations based on this module. We tackle large-scale soft robots by presenting a modular and reconfigurable soft robotic platform that can be used to build fully functional and untethered meter-scale soft robots. These findings indicate that a new wave of human-scale soft robots can be an alternative to classic rigid-bodied robots in tasks and environments where humans and machines can work side by side with capabilities that include, but are not limited to, autonomous legged locomotion and grasping. 
    more » « less
  4. In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in pick and place tasks, which are found across a range of application areas. The proposed system uses Large Language Model Meta AI (Llama3) to interpret voice commands by extracting essential details through parsing and decoding the commands into sequential actions. These actions are sent to DRL-VO, a learning-based control policy built on the Robot Operating System (ROS) that allows a robot to autonomously navigate through social spaces with static infrastructure and crowds of people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors. 
    more » « less
  5. Policy summarization is a computational paradigm for explaining the behavior and decision-making processes of autonomous robots to humans. It summarizes robot policies via exemplary demonstrations, aiming to improve human understanding of robotic behaviors. This understanding is crucial, especially since users often make critical decisions about robot deployment in the real world. Previous research in policy summarization has predominantly focused on simulated robots and environments, overlooking its application to physically embodied robots. Our work fills this gap by combining current policy summarization methods with a novel, interactive user interface that involves physical interaction with robots. We conduct human-subject experiments to assess our explanation system, focusing on the impact of different explanation modalities in policy summarization. Our findings underscore the unique advantages of combining virtual and physical training environments to effectively communicate robot behavior to human users. 
    more » « less