skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactively Explaining Robot Policies to Humans in Integrated Virtual and Physical Training Environments
Policy summarization is a computational paradigm for explaining the behavior and decision-making processes of autonomous robots to humans. It summarizes robot policies via exemplary demonstrations, aiming to improve human understanding of robotic behaviors. This understanding is crucial, especially since users often make critical decisions about robot deployment in the real world. Previous research in policy summarization has predominantly focused on simulated robots and environments, overlooking its application to physically embodied robots. Our work fills this gap by combining current policy summarization methods with a novel, interactive user interface that involves physical interaction with robots. We conduct human-subject experiments to assess our explanation system, focusing on the impact of different explanation modalities in policy summarization. Our findings underscore the unique advantages of combining virtual and physical training environments to effectively communicate robot behavior to human users.  more » « less
Award ID(s):
2222876
PAR ID:
10517599
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
ISBN:
9798400703232
Page Range / eLocation ID:
847 to 851
Subject(s) / Keyword(s):
Robotics Explainable AI Value Alignment AI-Assisted Human Training
Format(s):
Medium: X
Location:
Boulder CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In previous work, researchers have repeatedly demonstrated that robots' use of deictic gestures enables effective and natural human-robot interaction. However, new technologies such as augmented reality head mounted displays enable environments in which mixed-reality becomes possible, and in such environments, physical gestures become but one category among many different types of mixed reality deictic gestures. In this paper, we present the first experimental exploration of the effectiveness of mixed reality deictic gestures beyond physical gestures. Specifically, we investigate human perception of videos simulating the display of allocentric gestures, in which robots circle their targets in users' fields of view. Our results suggest that this is an effective communication strategy, both in terms of objective accuracy and subjective perception, especially when paired with complex natural language references. 
    more » « less
  2. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems. 
    more » « less
  3. Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human–robot interactions. As an alternative, we explore predicting people’s perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans’ predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users’ data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot. 
    more » « less
  4. null (Ed.)
    In this paper, we argue in favor of creating robots that both teach and learn. We propose a methodology for building robots that can learn a skill from an expert, perform the skill independently or collaboratively with the expert, and then teach the same skill to a novice. This requires combining insights from learning from demonstration, human-robot collaboration, and intelligent tutoring systems to develop knowledge representations that can be shared across all three components. As a case study for our methodology, we developed a glockenspiel-playing robot. The robot begins as a novice, learns how to play musical harmonies from an expert, collaborates with the expert to complete harmonies, and then teaches the harmonies to novice users. This methodology allows for new evaluation metrics that provide a thorough understanding of how well the robot has learned and enables a robot to act as an efficient facilitator for teaching across temporal and geographic separation. 
    more » « less
  5. Physical interaction between humans and robots can help robots learn to perform complex tasks. The robot arm gains information by observing how the human kinesthetically guides it throughout the task. While prior works focus on how the robot learns, it is equally important that this learning is transparent to the human teacher. Visual displays that show the robot’s uncertainty can potentially communicate this information; however, we hypothesize that visual feedback mechanisms miss out on the physical connection between the human and robot. In this work we present a soft haptic display that wraps around and conforms to the surface of a robot arm, adding a haptic signal at an existing point of contact without significantly affecting the interaction. We demonstrate how soft actuation creates a salient haptic signal while still allowing flexibility in device mounting. Using a psychophysics experiment, we show that users can accurately distinguish inflation levels of the wrapped display with an average Weber fraction of 11.4%. When we place the wrapped display around the arm of a robotic manipulator, users are able to interpret and leverage the haptic signal in sample robot learning tasks, improving identification of areas where the robot needs more training and enabling the user to provide better demonstrations. See videos of our device and user studies here: https://youtu.be/tX-2Tqeb9Nw 
    more » « less