Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.
more »
« less
Kinematics and coordination of moth flies walking on smooth and rough surfaces
Abstract The moth fly,Clogmia albipunctata, is a common synanthropic insect with a worldwide range that lives in nearly any area with moist, decaying organic matter. These habitats comprise both smooth, slippery substrates (e.g., bathroom drains) and heterogeneous, bumpy ground (e.g., soil in plant pots). By using terrain of varying levels of roughness, we focus specifically on how substrate roughness at the approximate size scale of the organism affects kinematics and coordination in adult moth flies. Finally, we compare and contrast our characterizations of locomotion inC. albipunctatawith previous work of insect walking in naturalistic environments.
more »
« less
- Award ID(s):
- 2317138
- PAR ID:
- 10516510
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Annals of the New York Academy of Sciences
- Volume:
- 1537
- Issue:
- 1
- ISSN:
- 0077-8923
- Format(s):
- Medium: X Size: p. 64-73
- Size(s):
- p. 64-73
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PremiseFloral scent is a complex trait that mediates many plant–insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. MethodsWe used a greenhouse common garden experiment to investigate variation in floral scent at three scales—within plants, among plants, and among populations—and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation inOenothera cespitosasubsp.marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. ResultsMultiple analytical approaches demonstrated substantial variation among and within populations in compound‐specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine‐derived compounds, and hypanthium length are consistent with a long‐tongued moth pollination syndrome. ConclusionsThe considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.more » « less
-
Variation in immune response in the generalist herbivore fall webworm across four common host plantsAbstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore.more » « less
-
Summary The timing of insects’ daily (feeding, movement) and seasonal (diapause, migration) rhythms affects their population dynamics and distribution. Yet, despite their implications for insect conservation and pest management, the genetic mechanisms underlying variation in timing are poorly understood. Prior research in the European corn borer moth (Ostrinia nubilalis) associated ecotype differences in seasonal diapause and daily activity with genetic variation at the circadian clock geneperiod(per). Here, we demonstrate that populations with divergent allele frequencies atperexhibit differences in daily behavior, seasonal development, and the expression of circadian clock genes. Specifically, later daily activity and shortened diapause were associated with a reduction and delay in the abundance of cyclingpermRNA. CRISPR/Cas9-mediated mutagenesis revealed thatperand/or an intact circadian clock network were essential for the appropriate timing of daily behavior and seasonal responsiveness. Furthermore, a reduction ofpergene dosage inperheterozygous mutants (per-/+) pleiotropically decreased the diapause incidence, shortened post-diapause development, and delayed the timing of daily behavior, in a manner phenotypically reminiscent of wild-type individuals. Altogether, this combination of observational and experimental research strongly suggests thatperis a master regulator of biological rhythms and may contribute to the observed life cycle differences between bivoltine (two generation) and univoltine (one generation)O. nubilalis. HighlightsNatural ecotypes with divergentperiod(per) genotypes differ in their daily and seasonal responses to photoperiodLater daily activity, reduced diapause incidence, and shorter post-diapause development is associated with reducedpermRNA abundanceperis essential for short-day recognition and daily timingReducedpergene dosage shortened post-diapause development and delayed locomotor activitymore » « less
-
Abstract Understanding the genetic basis of adaptive evolution following habitat expansion can have important implications for pest management. The pink rice borer (PRB),Sesamia inferens(Walker), is a destructive pest of rice that was historically restricted to regions south of 34° N latitude in China. However, with changes in global climate and farming practices, the distribution of this moth has progressively expanded, encompassing most regions in North China. Here, 3 highly differentiated subpopulations were discovered using high‐quality single‐nucleotide polymorphism and structural variant datasets across China, corresponding to northern, southern China regions, and the Yunnan‐Guizhou Plateau, with significant patterns of isolation by geographic and environmental distances. Our estimates of evolutionary history indicate asymmetric migration with varying population sizes across the 3 subpopulations. Selective sweep analyses estimated strong selection at insect cuticle glycine‐rich cuticular protein genes which are associated with enhanced desiccation adaptability in the northern group, and at the histone‐lysine‐N‐methyltransferase gene associated with range expansion and local adaptation in the Shandong population. Our findings have significant implications for the development of effective strategies to control this pest.more » « less
An official website of the United States government
