skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental demonstration of 128×128 optical cross-connects with 2.45 Pbps throughput
Award ID(s):
2210343
PAR ID:
10516597
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Institution of Engineering and Technology
Date Published:
Journal Name:
European Conference on Optical Communication
ISSN:
2688-2531
ISBN:
978-1-83953-926-8
Page Range / eLocation ID:
1322 to 1325
Format(s):
Medium: X
Location:
Hybrid Conference, Glasgow, UK
Sponsoring Org:
National Science Foundation
More Like this
  1. An ASIC combines a numerically controlled oscillator with reconfigurable amplitude and phase control of 16 channels to synthesize acoustic holograms with a phased array of ultrasonic transmitters. Multiple chiplets operate synchronously to drive arbitrarily many channels. A scalable digital delay line technique, leveraging on-chip SRAM and single-bit noise-shaped bitstreams, realizes area-efficient, high-density, and high-resolution true-time-delay phase shifts. The prototype system employs 8 chiplets to drive a 128-element array for hologram generation. 
    more » « less
  2. Machine learning-based side-channel attacks (MLSCAs) have demonstrated the capability to extract secret keys from AES by learning the correlation between leakages from power traces or timing of AES execution. Previous work has focused on unmasked AES, the captured power traces for profiling and testing have been collected from the same device, and they are primarily implemented on microcontrollers. In this paper, we present a comprehensive MLSCA that considers both masked and unmasked AES running on software and hardware with a side-channel leakage model under four scenarios involving two target boards (Artix-7 XC7AI00T FPGAs and STM32F415 microcontrollers) and different keys for training and testing the model. Our implementation results indicate that support vector machines outperformed other machine learning techniques on masked software and unmasked software AES with only 4 traces. Long short-term memory networks were found to outperform other techniques on unmasked hardware AES (FPGA) with only 283 power traces. 
    more » « less
  3. Surface acoustic wave (SAW) devices can generate significant heat due to acoustic damping when liquid droplets are placed on them, and this heating (acoustothermal heating) can be used for microscale heating purposes. However, SAW devices are often used in biosensing applications where significant acoustothermal temperature rise can damage the proteins or the biomolecules and destroy the sensor performances. In this paper, we have performed thermal camera-based experiments to study the heating phenomena and how they can be controlled by varying droplet sizes. We found that the temperature rise linearly increases with increasing SAW power whereas it decreases with increasing droplet volume. Hence, a larger liquid volume and lower SAW power can be used in biosensors to avoid significant heating. 
    more » « less