This content will become publicly available on May 22, 2025
The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume
- Award ID(s):
- 2044303
- PAR ID:
- 10516695
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use SPH simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L ∗ galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume, Romulus25, with stellar masses between 3 × 10 9 - 3 × 10 11 M ⊙ . We measure the fraction of metals remaining in the ISM and CGM of each galaxy, and calculate the expected mass of its SMBH based on the M−σ relation. The deviation of each SMBH from its expected mass, ΔMBH is compared to the potential of its host via σ . We find that SMBHs with accreted mass above the empirical M−σ relation are about 15\% more effective at removing metals from the ISM than under-massive SMBHs in star forming galaxies. Over-massive SMBHs suppress the overall star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little evidence for the evacuation of gas from their halos, in contrast with other simulations. Finally, we predict that C IV column densities in the CGM of L ∗ galaxies may depend on host galaxy SMBH mass. Our results show that the scatter in the low mass end of M−σ relation may indicate how effective a SMBH is at the local redistribution of mass in its host galaxy.more » « less
-
Abstract We present an analysis of Hubble Space Telescope COS/G160M observations of C
IV in the inner circumgalactic medium (CGM) of a novel sample of eightz ∼ 0,L ≈L ⋆galaxies, paired with UV-bright QSOs at impact parameters (R proj) between 25 and 130 kpc. The galaxies in this stellar-mass-controlled sample (log10M ⋆/M ⊙∼ 10.2–10.9M ⊙) host supermassive black holes (SMBHs) with dynamically measured masses spanning log10M BH/M ⊙∼ 6.8–8.4; this allows us to compare our results with models of galaxy formation where the integrated feedback history from the SMBH alters the CGM over long timescales. We find that the CIV column density measurements (N C IV; average log10N C IV,CH= 13.94 ± 0.09 cm−2) are largely consistent with existing measurements from other surveys ofN C IVin the CGM (average log10N C IV,Lit= 13.90 ± 0.08 cm−2), but do not show obvious variation as a function of the SMBH mass. By contrast, specific star formation rate (sSFR) is highly correlated with the ionized content of the CGM. We find a large spread in sSFR for galaxies with log10M BH/M ⊙> 7.0, where the CGM CIV content shows a clear dependence on galaxy sSFR but notM BH. Our results do not indicate an obvious causal link between CGM CIV and the mass of the galaxy’s SMBH; however, through comparisons to the EAGLE, Romulus25, and IllustrisTNG simulations, we find that our sample is likely too small to constrain such causality. -
Abstract Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows (
η M ,η E , andη Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 1010to 1012M ⊙, we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded (η M ∼ 0.1–10) but high-energy-loaded (η E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferringη E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. -
Abstract The circumgalactic medium (CGM) of star-forming dwarf galaxies plays a key role in regulating the galactic baryonic cycle. We investigate how susceptible the CGM of dwarf satellite galaxies is to ram pressure stripping in Milky Way–like environments. In a suite of hydrodynamical wind tunnel simulations, we model an intermediate-mass dwarf satellite galaxy (
M *= 107.2M ⊙) with a multiphase interstellar medium (ISM;M ISM= 107.9M ⊙) and CGM (M CGM,vir= 108.5M ⊙) along two first-infall orbits to more than 500 Myr past pericenter of a Milky Way–like host. The spatial resolution is ∼79 pc in the star-forming ISM and 316−632 pc in the CGM. Our simulations show that the dwarf satellite CGM removal is fast and effective: more than 95% of the CGM mass is ram pressure stripped within a few hundred megayears, even under a weak ram pressure orbit where the ISM stripping is negligible. The conditions for CGM survival are consistent with the analytical halo gas stripping predictions in McCarthy et al. We also find that including the satellite CGM does not effectively shield its galaxy, and therefore the ISM stripping rate is unaffected. Our results imply that a dwarf galaxy CGM is unlikely to be detected in satellite galaxies; and that the star formation of gaseous dwarf satellites is likely devoid of replenishment from a CGM. -
Abstract This study addresses how the incidence rate of strong O
vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure Ovi absorption within 400 projected kpc and 300 km s−1of 52 galaxies withM *∼ 3 × 1010M ⊙. The galaxies have redshifts 0.12 <z < 0.6, stellar masses 1010.1M ⊙<M *< 1010.9M ⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density Ovi absorption (N OVI ≥ 1014.3cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the Ovi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ -equivalent statistical significance. On average, the CGM of star-forming galaxies withM *∼ 3 × 1010M ⊙contains more Ovi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.