The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume
This content will become publicly available on July 24, 2025
We present an analysis of Hubble Space Telescope COS/G160M observations of C
- Award ID(s):
- 2009230
- PAR ID:
- 10553013
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Romulus25 , with stellar masses between log(M */M ⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theM BH–σ relation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔM BH, is compared to the potential of its host viaσ . We find that SMBHs with accreted mass aboveM BH–σ are more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civ column densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of theM BH–σ relation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy. -
Abstract We combine 126 new galaxy-O
vi absorber pairs from the CGM2survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of Ovi absorbers (N O VI) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-Ovi absorber pairs coveringz = 0–0.6, with host galaxy stellar massesM *= 107.8–1011.2M ⊙and galaxy-absorber impact parametersR ⊥= 0–400 proper kiloparsecs. In this work, we focus on the variation ofN O VIwith galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the averageN O VIwithin one virial radius of a star-forming galaxy is greatest for star-forming galaxies withM *= 109.2–1010M ⊙. Star-forming galaxies withM *between 108and 1011.2M ⊙can explain most Ovi systems with column densities greater than 1013.5cm−2. Sixty percent of the Ovi mass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed Ovi amount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses. -
Abstract Dwarf galaxies are found to have lost most of their metals via feedback processes; however, there still lacks consistent assessment on the retention rate of metals in their circumgalactic medium (CGM). Here we investigate the metal content in the CGM of 45 isolated dwarf galaxies with
M *= 106.5–9.5M ⊙(M 200m= 1010.0–11.5M ⊙) using the Hubble Space Telescope/Cosmic Origins Spectrograph. While Hi (Lyα ) is ubiquitously detected (89%) within the CGM, we find low detection rates (≈5%–22%) in Cii , Civ , Siii , Siiii , and Siiv , largely consistent with literature values. Assuming these ions form in the cool (T ≈ 104K) CGM with photoionization equilibrium, the observed Hi and metal column density profiles can be best explained by an empirical model with low gas density and high volume filling factor. For a typical galaxy withM 200m= 1010.9M ⊙(median of the sample), our model predicts a cool gas mass ofM CGM,cool∼ 108.4M ⊙, corresponding to ∼2% of the galaxy’s baryonic budget. Assuming a metallicity of 0.3Z ⊙, we estimate that the dwarf galaxy’s cool CGM likely harbors ∼10% of the metals ever produced, with the rest either in more ionized states in the CGM or transported to the intergalactic medium. We further examine the EAGLE simulation and show that Hi and low ions may arise from a dense cool medium, while Civ arises from a diffuse warmer medium. Our work provides the community with a uniform data set on dwarf galaxies’ CGM that combines our recent observations, additional archival data and literature compilation, which can be used to test various theoretical models of dwarf galaxies. -
Abstract This study addresses how the incidence rate of strong O
vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure Ovi absorption within 400 projected kpc and 300 km s−1of 52 galaxies withM *∼ 3 × 1010M ⊙. The galaxies have redshifts 0.12 <z < 0.6, stellar masses 1010.1M ⊙<M *< 1010.9M ⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density Ovi absorption (N OVI ≥ 1014.3cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the Ovi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ -equivalent statistical significance. On average, the CGM of star-forming galaxies withM *∼ 3 × 1010M ⊙contains more Ovi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass. -
Abstract We report the discovery of an accreting supermassive black hole at
z = 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα -break galaxy by Hubble with a Lyα redshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβ line is best fit by a narrow plus a broad component, where the latter is measured at 2.5σ with an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (M BH/M ⊙) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μ m photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M⊙∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 M⊙yr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z /Z ⊙∼ 0.1), dense (n e ∼ 103cm−3), and highly ionized (logU ∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object.