Pleasure in music has been linked to predictive coding of melodic and rhythmic patterns, subserved by connectivity between regions in the brain's auditory and reward networks. Specific musical anhedonics derive little pleasure from music and have altered auditory-reward connectivity, but no difficulties with music perception abilities and no generalized physical anhedonia. Recent research suggests that specific musical anhedonics experience pleasure in nonmusical sounds, suggesting that the implicated brain pathways may be specific to music reward. However, this work used sounds with clear real-world sources (e.g., babies laughing, crowds cheering), so positive hedonic responses could be based on the referents of these sounds rather than the sounds themselves. We presented specific musical anhedonics and matched controls with isolated short pleasing and displeasing synthesized sounds of varying timbres with no clear real-world referents. While the two groups found displeasing sounds equally displeasing, the musical anhedonics gave substantially lower pleasure ratings to the pleasing sounds, indicating that their sonic anhedonia is not limited to musical rhythms and melodies. Furthermore, across a large sample of participants, mean pleasure ratings for pleasing synthesized sounds predicted significant and similar variance in six dimensions of musical reward considered to be relatively independent, suggesting that pleasure in sonic timbres play a role in eliciting reward-related responses to music. We replicate the earlier findings of preserved pleasure ratings for semantically referential sounds in musical anhedonics and find that pleasure ratings of semantic referents, when presented without sounds, correlated with ratings for the sounds themselves. This association was stronger in musical anhedonics than in controls, suggesting the use of semantic knowledge as a compensatory mechanism for affective sound processing. Our results indicate that specific musical anhedonia is not entirely specific to melodic and rhythmic processing, and suggest that timbre merits further research as a source of pleasure in music.
more »
« less
Predictive coding in musical anhedonia: A study of groove
Groove, or the pleasurable urge to move to music, offers unique insight into the relationship between emotion and action. The predictive coding of music model posits that groove is linked to predictions of music formed over time, with stimuli of moderate complexity rated as most pleasurable and likely to engender movement. At the same time, listeners vary in the pleasure they derive from music listening: individuals with musical anhedonia report reduced pleasure during music listening despite no impairments in music perception and no general anhedonia. Little is known about musical anhedonics’ subjective experience of groove. Here we examined the relationship between groove and music reward sensitivity. Participants (n = 287) heard drum-breaks that varied in perceived complexity, and rated each for pleasure and wanting to move. Musical anhedonics (n = 13) had significantly lower ratings compared to controls (n = 13) matched on music perception abilities and general anhedonia. However, both groups demonstrated the classic inverted-U relationship between ratings of pleasure & move and stimulus complexity, with ratings peaking for intermediately complex stimuli. Across our entire sample, pleasure ratings were most strongly related with music reward sensitivity for highly complex stimuli (i.e., there was an interaction between music reward sensitivity and stimulus complexity). Finally, the sensorimotor subscale of music reward was uniquely associated with move, but not pleasure, ratings above and beyond the five other dimensions of musical reward. Results highlight the multidimensional nature of reward sensitivity and suggest that pleasure and wanting to move are driven by overlapping but separable mechanisms.
more »
« less
- PAR ID:
- 10516806
- Editor(s):
- Vukadinovic, Maja
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0301478
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Listening to pleasurable music is known to engage the brain’s reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain’s auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.more » « less
-
Much of what we know and love about music hinges on our ability to make successful predictions, which appears to be an intrinsically rewarding process. Yet the exact process by which learned predictions become pleasurable is unclear. Here we created novel melodies in an alternative scale different from any established musical culture to show how musical preference is generated de novo. Across nine studies ( n = 1,185), adult participants learned to like more frequently presented items that adhered to this rapidly learned structure, suggesting that exposure and prediction errors both affected self-report liking ratings. Learning trajectories varied by music-reward sensitivity but were similar for U.S. and Chinese participants. Furthermore, functional MRI activity in auditory areas reflected prediction errors, whereas functional connectivity between auditory and medial prefrontal regions reflected both exposure and prediction errors. Collectively, results support predictive coding as a cognitive mechanism by which new musical sounds become rewarding.more » « less
-
The dominant research strategy within the field of music perception and cognition has typically involved new data collection and primary analysis techniques. As a result, numerous information-rich yet underexplored datasets exist in publicly accessible online repositories. In this paper we contribute two secondary analysis methodologies to overcome two common challenges in working with previously collected data: lack of participant stimulus ratings and lack of physiological baseline recordings. Specifically, we focus on methodologies that unlock previously unexplored musical preference questions. Preferred music plays important roles in our personal, social, and emotional well-being, and is capable of inducing emotions that result in psychophysiological responses. Therefore, we select the Study Forrest dataset “auditory perception” extension as a case study, which provides physiological and self-report demographics data for participants (N = 20) listening to clips from different musical genres. In Method 1, we quantitatively model self-report genre preferences using the MUSIC five-factor model: a tool recognized for genre-free characterization of musical preferences. In Method 2, we calculate synthetic baselines for each participant, allowing us to compare physiological responses (pulse and respiration) across individuals. With these methods, we uncover average changes in breathing rate as high as 4.8%, which correlate with musical genres in this dataset (p < .001). High-level musical characteristics from the MUSIC model (mellowness and intensity) further reveal a linear breathing rate trend among genres (p < .001). Although no causation can be inferred given the nature of the analysis, the significant results obtained demonstrate the potential for previous datasets to be more productively harnessed for novel research.more » « less
-
Human imagination is generative and creative yet deeply rooted in culture and familiarity. Recent studies have quantified the effects of culture on stories that are imagined during music listening, but the music used in previous work was always drawn from a tradition familiar to participants from at least one of the cultures. Here we report the first study of imagined stories to music written in a musical system that is novel to participants from each culture, thus allowing for a direct comparison of narratives prompted by the same set of excerpts that is comparably unfamiliar to both groups. Music composed in the Bohlen–Pierce scale was presented to participants from two geographically defined cultures: Boston, United States and Beijing, China. We also examined how individual differences, such as in musicality and sensitivity to musical reward, might affect narrative engagement and semantic content of the imagined stories as measured by tools from natural language processing. Results showed that semantic spaces of music-evoked imaginings differed between Boston and Beijing cohorts. While both cultures were similarly engaged by the story response task, differences emerged in the semantic content of the imagined stories. Boston participants who reported being more absorbed by music wrote more unconventional stories, whereas Beijing participants who reported more emotional responses to music wrote more conventional stories. These results reveal the roles of culture and individual differences in modes of narrative engagement and imagination during music listening. (PsycInfo Database Record (c) 2023 APA, all rights reserved)more » « less
An official website of the United States government

