skip to main content


This content will become publicly available on September 15, 2024

Title: STAMINA in C++: Modernizing an Infinite-State Probabilistic Model Checker
Improving the scalability of probabilistic model checking (PMC) tools is crucial to the verification of real-world system designs. The STAMINA infinite-state PMC tool achieves scalability by iteratively constructing a partial state space for an unbounded continuous-time Markov chain model, where a majority of the probability mass resides. It then performs time-bounded transient PMC. It can efficiently produce an accurate probability bound to the property under verification. We present a new software architecture design and the C++ implementation of the STAMINA 2.0 algorithm, integrated with the STORM model checker. This open-source STAMINA implementation offers a high degree of modularity and provides significant optimizations to the STAMINA 2.0 algorithm. Performance improvements are demonstrated on multiple challenging benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, over the previous STAMINA implementation. Additionally, its design allows for future customizations and optimizations to the STAMINA algorithm.  more » « less
Award ID(s):
1856733
NSF-PAR ID:
10516911
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Jansen, N; Tribastone, M
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Journal Name:
Lecture notes in computer science
ISSN:
1611-3349
ISBN:
978-3-031-43835-6
Page Range / eLocation ID:
101--109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Finkbeiner, B. ; Wies, T. (Ed.)
    Stochastic model checking (SMC) is a formal verification technique for the analysis of systems with probabilistic behavior. Scalability has been a major limiting factor for SMC tools to analyze real-world systems with large or infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC) model checker, STAMINA, tackles this problem by selectively exploring only a portion of a model’s state space, where a majority of the probability mass resides, to efficiently give an accurate probability bound to properties under verification. In this paper, we present two major improvements to STAMINA, namely, a method of calculating and distributing estimated state reachability probabilities that improves state space truncation efficiency and combination of the previous two CTMC analyses into one for generating the probability bound. Demonstration of the improvements on several benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, yield significant savings in both run-time and state space size (and hence memory), compared to both the previous version of STAMINA and the infinite-state CTMC model checker INFAMY. The improved STAMINA demonstrates significant scalability to allow for the verification of complex real-world infinite-state systems. 
    more » « less
  2. Stochastic model checking is a technique for analyzing systems that possess probabilistic characteristics. However, its scalability is limited as probabilistic models of real-world applications typically have very large or infinite state space. This paper presents a new infinite state CTMC model checker, STAMINA, with improved scalability. It uses a novel state space approximation method to reduce large and possibly infinite state CTMC models to finite state representations that are amenable to existing stochastic model checkers. It is integrated with a new property-guided state expansion approach that improves the analysis accuracy. Demonstration of the tool on several benchmark examples shows promising results in terms of analysis efficiency and accuracy compared with a state-of-the-art CTMC model checker that deploys a similar approximation method. 
    more » « less
  3. In synthetic biology, combinational circuits are used to program cells for various new applications like biosensors, drug delivery systems, and biofuels. Similar to asynchronous electronic circuits, some combinational genetic circuits may show unwanted switching variations (glitches) caused by multiple input changes. Depending on the biological circuit, glitches can cause irreversible effects and jeopardize the circuit’s functionality. This paper presents a stochastic analysis to predict glitch propensities for three implementations of a genetic circuit with known glitching behavior. The analysis uses STochastic Approximate Model-checker for INfinite-state Analysis (STAMINA), a tool for stochastic verification. The STAMINA results were validated by comparison to stochastic simulation in iBioSim resulting in further improvements of STAMINA. This paper demonstrates that stochastic verification can be utilized by genetic designers to evaluate design choices and input restrictions to achieve a desired reliability of operation. 
    more » « less
  4. Silva, A. (Ed.)
    This paper presents Verisig 2.0, a verification tool for closed-loop systems with neural network (NN) controllers. We focus on NNs with tanh/sigmoid activations and develop a Taylor-model-based reachability algorithm through Taylor model preconditioning and shrink wrapping. Furthermore, we provide a parallelized implementation that allows Verisig 2.0 to efficiently handle larger NNs than existing tools can. We provide an extensive evaluation over 10 benchmarks and compare Verisig 2.0 against three state-of-the-art verification tools. We show that Verisig 2.0 is both more accurate and faster, achieving speed-ups of up to 21x and 268x against different tools, respectively. 
    more » « less
  5. null (Ed.)
    Network functions like firewalls, proxies, and NATs are instances of distributed systems that lie on the critical path for a substantial fraction of today's cloud applications. Unfortunately, validating these systems remains difficult due to their complex stateful, timed, and distributed behaviors. In this paper, we present the design and implementation of Aragog, a runtime verification system for distributed network functions that achieves high expressiveness, fidelity, and scalability. Given a property of interest, Aragogefficiently checks running systems for violations of the property with a scale-out architecture consisting of a collection of global verifiers and local monitors. To improve performance and reduce communication overhead, Aragog includes an array of optimizations that leverage properties of networked systems to suppress provably unnecessary system events and to shard verification over every available local and global component. We evaluate Aragog over several network functions including a NAT Gateway that powers Azure, identifying both design and implementation bugs in the process. 
    more » « less