skip to main content


This content will become publicly available on December 1, 2025

Title: Belowground plant allocation regulates rice methane emissions from degraded peat soils
Abstract

Carbon-rich peat soils have been drained and used extensively for agriculture throughout human history, leading to significant losses of their soil carbon. One solution for rewetting degraded peat is wet crop cultivation. Crops such as rice, which can grow in water-saturated conditions, could enable agricultural production to be maintained whilst reducing CO2and N2O emissions from peat. However, wet rice cultivation can release considerable methane (CH4). Water table and soil management strategies may enhance rice yield and minimize CH4emissions, but they also influence plant biomass allocation strategies. It remains unclear how water and soil management influences rice allocation strategies and how changing plant allocation and associated traits, particularly belowground, influence CH4-related processes. We examined belowground biomass (BGB), aboveground biomass (AGB), belowground:aboveground ratio (BGB:ABG), and a range of root traits (root length, root diameter, root volume, root area, and specific root length) under different soil and water treatments; and evaluated plant trait linkages to CH4. Rice (Oryza sativaL.) was grown for six months in field mesocosms under high (saturated) or low water table treatments, and in either degraded peat soil or degraded peat covered with mineral soil. We found that BGB and BGB:AGB were lowest in water saturated conditions where mineral soil had been added to the peat, and highest in low-water table peat soils. Furthermore, CH4and BGB were positively related, with BGB explaining 60% of the variation in CH4but only under low water table conditions. Our results suggest that a mix of low water table and mineral soil addition could minimize belowground plant allocation in rice, which could further lower CH4likely because root-derived carbon is a key substrate for methanogenesis. Minimizing root allocation, in conjunction with water and soil management, could be explored as a strategy for lowering CH4emissions from wet rice cultivation in degraded peatlands.

 
more » « less
Award ID(s):
1752083
PAR ID:
10517096
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Scientific Reports
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2and CH4fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2emission is more related to plant input than CH4production and emission. The stable and substantial CH4emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 °C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2and CH4emissions. Although hydrology continued to be the primary factor influencing CH4emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2and CH4emissions.

     
    more » « less
  2. Abstract

    Water table depth and vegetation are key controls of methane (CH4) emissions from peatlands. Microtopography integrates these factors into features called microforms. Microforms often differ in CH4emissions, but microform‐dependent patterns of belowground CH4cycling remain less clearly resolved. To investigate the impact of microtopography on belowground CH4cycling, we characterized depth profiles of the community composition and activity of CH4‐cycling microbes using 16S rRNA amplicon sequencing, incubations, and measurements of porewater CH4concentration and isotopic composition from hummocks and lawns at Sallie's Fen in NH, USA. Geochemical proxies of methanogenesis and methanotrophy indicated that microforms differ in dominant microbial CH4cycling processes. Hummocks, where water table depth is lower, had higher porewater redox potential (Eh) and higher porewater δ13C‐CH4values in the upper 30 cm than lawns, where water table depth is closer to the peat surface. Porewater δ13C‐CH4and δD‐CH3D values were highest at the surface of hummocks where the ratio of methanotrophs to methanogens was also greatest. These results suggest that belowground CH4cycling in hummocks is more strongly regulated by methanotrophy, while in lawns methanogenesis is more dominant. We also investigated controls of porewater CH4chemistry. The ratio of the relative abundance of methanotrophs to methanogens was the strongest predictor of porewater CH4concentration and δ13C‐CH4, while vegetation composition had minimal influence. As microbial community composition was strongly influenced by redox conditions but not vegetation, we conclude that water table depth is a stronger control of belowground CH4cycling across microforms than vegetation.

     
    more » « less
  3. Abstract

    High‐latitude climate change has impacted vegetation productivity, composition, and distribution across tundra ecosystems. Over the past few decades in northern Alaska, emergent macrophytes have increased in cover and density, coincident with increased air and water temperature, active layer depth, and nutrient availability. Unraveling the covarying climate and environmental controls influencing long‐term change trajectories is paramount for advancing our predictive understanding of the causes and consequences of warming in permafrost ecosystems. Within a climate‐controlled carbon flux monitoring system, we evaluate the impact of elevated nutrient availability associated with degraded permafrost (high‐treatment) and maximum field observations (low‐treatment), on aquatic macrophyte growth and methane (CH4) emissions. Nine aquaticArctophila fulva‐dominated tundra monoliths were extracted from tundra ponds near Utqiaġvik, Alaska, and placed in growth chambers that controlled ambient conditions (i.e., light, temperature, and water table), while measuring plant growth (periodically) and CH4fluxes (continuously) for 12 weeks. Results indicate that high nutrient treatments similar to that released from permafrost thaw can increase macrophyte biomass and total CH4emission by 54 and 64%, respectively. However, low treatments did not respond to fertilization. We estimate that permafrost thaw in tundra wetlands near Utqiaġvik have the potential to enhance regional CH4efflux by 30%. This study demonstrates the sensitivity of arctic tundra wetland biogeochemistry to nutrient release from permafrost thaw and suggests the decadal‐scale expansion ofA. fulva‐dominant aquatic plant communities, and increased CH4emissions in the region were likely in response to thawing permafrost, potentially representing a novel case study of the permafrost carbon feedback to warming.

     
    more » « less
  4. Abstract

    While a stimulating effect of plant primary productivity on soil carbon dioxide (CO2) emissions has been well documented, links between gross primary productivity (GPP) and wetland methane (CH4) emissions are less well investigated. Determination of the influence of primary productivity on wetland CH4emissions (FCH4) is complicated by confounding influences of water table level and temperature on CH4production, which also vary seasonally. Here, we evaluate the link between preceding GPP and subsequent FCH4at two fens in Wisconsin using eddy covariance flux towers, Lost Creek (US‐Los) and Allequash Creek (US‐ALQ). Both wetlands are mosaics of forested and shrub wetlands, with US‐Los being larger in scale and having a more open canopy. Co‐located sites with multi‐year observations of flux, hydrology, and meteorology provide an opportunity to measure and compare lag effects on FCH4without interference due to differing climate. Daily average FCH4from US‐Los reached a maximum of 47.7 ηmol CH4m−2 s−1during the study period, while US‐ALQ was more than double at 117.9 ηmol CH4 m−2 s−1. The lagged influence of GPP on temperature‐normalized FCH4(Tair‐FCH4) was weaker and more delayed in a year with anomalously high precipitation than a following drier year at both sites. FCH4at US‐ALQ was lower coincident with higher stream discharge in the wet year (2019), potentially due to soil gas flushing during high precipitation events and lower water temperatures. Better understanding of the lagged influence of GPP on FCH4due to this study has implications for climate modeling and more accurate carbon budgeting.

     
    more » « less
  5. Abstract

    Rapid Arctic warming is causing permafrost to thaw and exposing large quantities of soil organic carbon (C) to potential decomposition. In dry upland tundra systems, subsidence from thawing permafrost can increase surface soil moisture resulting in higher methane (CH4) emissions from newly waterlogged soils. The proportion of C released as carbon dioxide (CO2) and CH4remains uncertain as previously dry landscapes transition to a thawed state, resulting in both wetter and drier microsites. To address how thaw and moisture interact to affect total C emissions, we measured CH4and CO2emissions from paired chambers across thaw and moisture gradients created by nine years of experimental soil warming in interior Alaska. Cumulative growing season (May–September) CH4emissions were elevated at both wetter (216.1–1,099.4 mg CH4‐C m−2) and drier (129.7–392.3 mg CH4‐C m−2) deeply thawed microsites relative to shallow thaw (55.6–215.7 mg CH4‐C m−2) and increased with higher deep soil temperatures and permafrost thaw depth. Interannual variability in CH4emissions was driven by wet conditions in graminoid‐dominated plots that generated >70% of emissions in a wet year. Shoulder season emissions were equivalent to growing season CH4emissions rates in the deeply thawed, warmed soils, highlighting the importance of non‐growing season CH4emissions. Net C sink potential was reduced in deeply thawed wet plots by 4%–42%, and by 3.5%–8% in deeply thawed drier plots due to anaerobic respiration, suggesting that some dry upland tundra landscapes may transition into stronger CH4sources in a warming Arctic.

     
    more » « less