Inorganic salt hydrates are promising phase-change materials (PCMs) for thermal energy storage due to their high latent heat of fusion. However, their practical application is often limited by their unstable form, dehydration, large supercooling, and low thermal conductivity. Porous melamine foam and its carbonized derivatives are potential supporting porous materials to encapsulate inorganic salt hydrate PCMs to address these problems. This work investigates the effect of pyrolysis temperature on the morphology and structure of the carbonized foams and their thermal energy storage performance. Pyrolysis of melamine foam at 700−900 °C leads to the formation of crystalline sodium cyanate and sodium carbonate particles on the foam skeleton surface, which allows the spontaneous impregnation of the carbon foam with molten CaCl2·6H2O.The form-stable foam-CaCl2·6H2O composite effectively suppresses supercooling and dehydration, demonstrating the efficacy of carbon foam as a promising supporting material for inorganic salt hydrate PCMs.
more »
« less
Causal Structure in Spin Foams
The metric field of general relativity is almost fully determined by its causal structure. Yet, in spin foam models of quantum gravity, the role played by the causal structure is still largely unexplored. The goal of this paper is to clarify how causality is encoded in such models. The quest unveils the physical meaning of the orientation of the two-complex and its role as a dynamical variable. We propose a causal version of the EPRL spin foam model and discuss the role of the causal structure in the reconstruction of a semiclassical space–time geometry.
more »
« less
- Award ID(s):
- 2207851
- PAR ID:
- 10517097
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Universe
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 181
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)The relationship between perception and inference, as postulated by Helmholtz in the 19th century, is paralleled in modern machine learning by generative models like Variational Autoencoders (VAEs) and their hierarchical variants. Here, we evaluate the role of hierarchical inference and its alignment with brain function in the domain of motion perception. We first introduce a novel synthetic data framework, Retinal Optic Flow Learning (ROFL), which enables control over motion statistics and their causes. We then present a new hierarchical VAE and test it against alternative models on two downstream tasks: (i) predicting ground truth causes of retinal optic flow (e.g., self-motion); and (ii) predicting the responses of neurons in the motion processing pathway of primates. We manipulate the model architectures (hierarchical versus non-hierarchical), loss functions, and the causal structure of the motion stimuli. We find that hierarchical latent structure in the model leads to several improvements. First, it improves the linear decodability of ground truth factors and does so in a sparse and disentangled manner. Second, our hierarchical VAE outperforms previous state-of-the-art models in predicting neuronal responses and exhibits sparse latent-to-neuron relationships. These results depend on the causal structure of the world, indicating that alignment between brains and artificial neural networks depends not only on architecture but also on matching ecologically relevant stimulus statistics. Taken together, our results suggest that hierarchical Bayesian inference underlines the brain’s understanding of the world, and hierarchical VAEs can effectively model this understanding.more » « less
-
Cassio de Campos, Marloes H. (Ed.)Causal analyses of longitudinal data generally assume that the qualitative causal structure relating variables remains invariant over time. In structured systems that transition between qualitatively differ- ent states in discrete time steps, such an approach is deficient on two fronts. First, time-varying variables may have state-specific causal relationships that need to be captured. Second, an intervention can result in state transitions downstream of the intervention different from those actually observed in the data. In other words, interventions may counter- factually alter the subsequent temporal evolution of the system. We introduce a generalization of causal graphical models, Path Dependent Structural Equation Models (PDSEMs), that can describe such systems. We show how causal inference may be performed in such models and illustrate its use in simulations and data obtained from a septoplasty surgical procedure.more » « less
-
A dense closed cell foam is studied to determine which continuum theory of elasticity is applicable. Size effects inconsistent with classical elasticity are observed. The material exhibits a characteristic length scale considerably larger, by more than a factor 6, than the largest observable structure size. The Cosserat coupling number N is shown to be small, via measurements of size effects in square section bars, comparison with size effects in round section bars, and determination of warp of a square section bar in torsion. For this material, the couple stress theory is excluded and the modified couple stress theory is excluded. Theories that force constants to their thermodynamic limits do not apply to this foam. The role of other generalized continuum theories is considered.more » « less
-
Abstract Solar‐driven steam generation, whereby solar energy is harvested to purify water directly, is emerging as a promising approach to mitigate the worldwide water crisis. The scalable application of conventional 3D evaporators is hindered by their complex spatial geometries. A 2.5D structure is a spatial extension of a 2D structure with an addition of a third vertical dimension, achieving both the feasibility of 2D structure and the performance of 3D structure simultaneously. Here, an interconnected open‐pore 2.5D Cu/CuO foam‐based photothermal evaporator capable of achieving a high evaporation rate of 4.1 kg m−2h−1under one sun illumination by exposing one end of the planar structure to air is demonstrated. The micro‐sized open‐pore structure of Cu/CuO foam allows it to trap incident sunlight, and the densely distributed blade‐like CuO nanostructures effectively scatter sunlight inside pores simultaneously. The inherent hydrophilicity of CuO and capillarity forces from the porous structure of Cu foam continuously supply sufficient water. Moreover, the doubled working sides of Cu/CuO foam enlarge the exposure area enabling efficient vapor diffusion. The feasible fabrication process and the combined structural features of Cu/CuO foam offer new insight into the future development of solar‐driven evaporators in large‐scale applications with practical durability.more » « less
An official website of the United States government

