Understanding the impact of operator characteristics on human-automation interaction (HAI) is crucial as automation becomes pervasive. Despite extensive HAI research, the association between operator characteristics and their dependence on automation has not been thoroughly examined. This study, therefore, examines how individual characteristics affect operator dependence behaviors when interacting with automation. Through a controlled experiment involving 52 participants in a dual-task scenario, we find that operators’ decision-making style, risk propensity, and agreeableness are associated with their dependence behaviors when using automation. This research illuminates the role of personal characteristics in HAI, facilitating personalized team interactions, trust building, and enhanced performance in automated settings.
more »
« less
Adapting to Imperfect Automation: The Impact of Experience on Dependence Behavior and Response Strategies
This study examined the impact of experience on individuals’ dependence behavior and response strategies when interacting with imperfect automation. 41 participants used an automated aid to complete a dual-task scenario comprising of a compensatory tracking task and a threat detection task. The entire experiment was divided into four quarters and multi-level models (MLM) were built to investigate the relationship between experience and the dependent variables. Results show that compliance and reliance behaviors and perfor- mance scores significantly increased as participants gained more experience with automation. In addition, as the experiment progressed, a significant number of participants adapted to the automation and resorted to an extreme use response strategy. The findings of this study suggest that automation response strategies are not static and most individual operators eventually follow or discard the automation. Understanding individual response strategies can support the development of individualized automation systems and improve operator training.
more »
« less
- Award ID(s):
- 2045009
- PAR ID:
- 10517143
- Publisher / Repository:
- Human Factors and Ergonomics Society
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 67
- Issue:
- 1
- ISSN:
- 1071-1813
- Page Range / eLocation ID:
- 97 to 103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ObjectiveWe examine how human operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. BackgroundMost existing studies measured trust by administering questionnaires at the end of an experiment. Only a limited number of studies viewed trust as a dynamic variable that can strengthen or decay over time. MethodSeventy-five participants took part in an aided memory recognition task. In the task, participants viewed a series of images and later on performed 40 trials of the recognition task to identify a target image when it was presented with a distractor. In each trial, participants performed the initial recognition by themselves, received a recommendation from an automated decision aid, and performed the final recognition. After each trial, participants reported their trust on a visual analog scale. ResultsOutcome bias and contrast effect significantly influence human operators’ trust adjustments. An automation failure leads to a larger trust decrement if the final outcome is undesirable, and a marginally larger trust decrement if the human operator succeeds the task by him/herself. An automation success engenders a greater trust increment if the human operator fails the task. Additionally, automation failures have a larger effect on trust adjustment than automation successes. ConclusionHuman operators adjust their trust in automation as a result of their moment-to-moment interaction with automation. Their trust adjustments are significantly influenced by decision-making heuristics/biases. ApplicationUnderstanding the trust adjustment process enables accurate prediction of the operators’ moment-to-moment trust in automation and informs the design of trust-aware adaptive automation.more » « less
-
The rapid growth of autonomous vehicles is expected to improve roadway safety. However, certain levels of vehicle automation will still require drivers to ‘takeover’ during abnormal situations, which may lead to breakdowns in driver-vehicle interactions. To date, there is no agreement on how to best support drivers in accomplishing a takeover task. Therefore, the goal of this study was to investigate the effectiveness of multimodal alerts as a feasible approach. In particular, we examined the effects of uni-, bi-, and trimodal combinations of visual, auditory, and tactile cues on response times to takeover alerts. Sixteen participants were asked to detect 7 multimodal signals (i.e., visual, auditory, tactile, visual-auditory, visual-tactile, auditory-tactile, and visual-auditory-tactile) while driving under two conditions: with SAE Level 3 automation only or with SAE Level 3 automation in addition to performing a road sign detection task. Performance on the signal and road sign detection tasks, pupil size, and perceived workload were measured. Findings indicate that trimodal combinations result in the shortest response time. Also, response times were longer and perceived workload was higher when participants were engaged in a secondary task. Findings may contribute to the development of theory regarding the design of takeover request alert systems within (semi) autonomous vehicles.more » « less
-
Abstract In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.more » « less
-
Adaptive task allocation is used in many human-machine systems and has been proven to improve operators’ performance with automated systems. However, there has been limited knowledge surrounding the benefits of adaptive task allocation in automated vehicles. In this study, participants were presented with photos and videos depicting driving scenarios of low or high workloads at two levels of automation (SAE Levels 2 and 3). The participants reported which tasks they felt comfortable allocating to themselves or to the driving automation system (DAS) in each driving scenario, as well as whether they would conduct the task allocation manually or have the DAS automatically allocate the tasks. Our results showed that participants preferred conducting manual task allocation and preferred the system to complete more tasks when the perceived workload was high. There was no significant difference between the high and low workload scenarios in terms of whether participants chose to allocate tasks.more » « less