ImportanceTrust in physicians and hospitals has been associated with achieving public health goals, but the increasing politicization of public health policies during the COVID-19 pandemic may have adversely affected such trust. ObjectiveTo characterize changes in US adults’ trust in physicians and hospitals over the course of the COVID-19 pandemic and the association between this trust and health-related behaviors. Design, Setting, and ParticipantsThis survey study uses data from 24 waves of a nonprobability internet survey conducted between April 1, 2020, and January 31, 2024, among 443 455 unique respondents aged 18 years or older residing in the US, with state-level representative quotas for race and ethnicity, age, and gender. Main Outcome and MeasureSelf-report of trust in physicians and hospitals; self-report of SARS-CoV-2 and influenza vaccination and booster status. Survey-weighted regression models were applied to examine associations between sociodemographic features and trust and between trust and health behaviors. ResultsThe combined data included 582 634 responses across 24 survey waves, reflecting 443 455 unique respondents. The unweighted mean (SD) age was 43.3 (16.6) years; 288 186 respondents (65.0%) reported female gender; 21 957 (5.0%) identified as Asian American, 49 428 (11.1%) as Black, 38 423 (8.7%) as Hispanic, 3138 (0.7%) as Native American, 5598 (1.3%) as Pacific Islander, 315 278 (71.1%) as White, and 9633 (2.2%) as other race and ethnicity (those who selected “Other” from a checklist). Overall, the proportion of adults reporting a lot of trust for physicians and hospitals decreased from 71.5% (95% CI, 70.7%-72.2%) in April 2020 to 40.1% (95% CI, 39.4%-40.7%) in January 2024. In regression models, features associated with lower trust as of spring and summer 2023 included being 25 to 64 years of age, female gender, lower educational level, lower income, Black race, and living in a rural setting. These associations persisted even after controlling for partisanship. In turn, greater trust was associated with greater likelihood of vaccination for SARS-CoV-2 (adjusted odds ratio [OR], 4.94; 95 CI, 4.21-5.80) or influenza (adjusted OR, 5.09; 95 CI, 3.93-6.59) and receiving a SARS-CoV-2 booster (adjusted OR, 3.62; 95 CI, 2.99-4.38). Conclusions and RelevanceThis survey study of US adults suggests that trust in physicians and hospitals decreased during the COVID-19 pandemic. As lower levels of trust were associated with lesser likelihood of pursuing vaccination, restoring trust may represent a public health imperative. 
                        more » 
                        « less   
                    
                            
                            Evolving Face Mask Guidance During a Pandemic and Potential Harm to Public Perception: Infodemiology Study of Sentiment and Emotion on Twitter
                        
                    
    
            BackgroundThroughout the COVID-19 pandemic, US Centers for Disease Control and Prevention policies on face mask use fluctuated. Understanding how public health communications evolve around key policy decisions may inform future decisions on preventative measures by aiding the design of communication strategies (eg, wording, timing, and channel) that ensure rapid dissemination and maximize both widespread adoption and sustained adherence. ObjectiveWe aimed to assess how sentiment on masks evolved surrounding 2 changes to mask guidelines: (1) the recommendation for mask use on April 3, 2020, and (2) the relaxation of mask use on May 13, 2021. MethodsWe applied an interrupted time series method to US Twitter data surrounding each guideline change. Outcomes were changes in the (1) proportion of positive, negative, and neutral tweets and (2) number of words within a tweet tagged with a given emotion (eg, trust). Results were compared to COVID-19 Twitter data without mask keywords for the same period. ResultsThere were fewer neutral mask-related tweets in 2020 (β=–3.94 percentage points, 95% CI –4.68 to –3.21; P<.001) and 2021 (β=–8.74, 95% CI –9.31 to –8.17; P<.001). Following the April 3 recommendation (β=.51, 95% CI .43-.59; P<.001) and May 13 relaxation (β=3.43, 95% CI 1.61-5.26; P<.001), the percent of negative mask-related tweets increased. The quantity of trust-related terms decreased following the policy change on April 3 (β=–.004, 95% CI –.004 to –.003; P<.001) and May 13 (β=–.001, 95% CI –.002 to 0; P=.008). ConclusionsThe US Twitter population responded negatively and with less trust following guideline shifts related to masking, regardless of whether the guidelines recommended or relaxed mask usage. Federal agencies should ensure that changes in public health recommendations are communicated concisely and rapidly. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10517168
- Publisher / Repository:
- Journal of Medical Internet Research
- Date Published:
- Journal Name:
- Journal of Medical Internet Research
- Volume:
- 25
- ISSN:
- 1438-8871
- Page Range / eLocation ID:
- e40706
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
- 
            BackgroundLaypeople have easy access to health information through large language models (LLMs), such as ChatGPT, and search engines, such as Google. Search engines transformed health information access, and LLMs offer a new avenue for answering laypeople’s questions. ObjectiveWe aimed to compare the frequency of use and attitudes toward LLMs and search engines as well as their comparative relevance, usefulness, ease of use, and trustworthiness in responding to health queries. MethodsWe conducted a screening survey to compare the demographics of LLM users and nonusers seeking health information, analyzing results with logistic regression. LLM users from the screening survey were invited to a follow-up survey to report the types of health information they sought. We compared the frequency of use of LLMs and search engines using ANOVA and Tukey post hoc tests. Lastly, paired-sample Wilcoxon tests compared LLMs and search engines on perceived usefulness, ease of use, trustworthiness, feelings, bias, and anthropomorphism. ResultsIn total, 2002 US participants recruited on Prolific participated in the screening survey about the use of LLMs and search engines. Of them, 52% (n=1045) of the participants were female, with a mean age of 39 (SD 13) years. Participants were 9.7% (n=194) Asian, 12.1% (n=242) Black, 73.3% (n=1467) White, 1.1% (n=22) Hispanic, and 3.8% (n=77) were of other races and ethnicities. Further, 1913 (95.6%) used search engines to look up health queries versus 642 (32.6%) for LLMs. Men had higher odds (odds ratio [OR] 1.63, 95% CI 1.34-1.99; P<.001) of using LLMs for health questions than women. Black (OR 1.90, 95% CI 1.42-2.54; P<.001) and Asian (OR 1.66, 95% CI 1.19-2.30; P<.01) individuals had higher odds than White individuals. Those with excellent perceived health (OR 1.46, 95% CI 1.1-1.93; P=.01) were more likely to use LLMs than those with good health. Higher technical proficiency increased the likelihood of LLM use (OR 1.26, 95% CI 1.14-1.39; P<.001). In a follow-up survey of 281 LLM users for health, most participants used search engines first (n=174, 62%) to answer health questions, but the second most common first source consulted was LLMs (n=39, 14%). LLMs were perceived as less useful (P<.01) and less relevant (P=.07), but elicited fewer negative feelings (P<.001), appeared more human (LLM: n=160, vs search: n=32), and were seen as less biased (P<.001). Trust (P=.56) and ease of use (P=.27) showed no differences. ConclusionsSearch engines are the primary source of health information; yet, positive perceptions of LLMs suggest growing use. Future work could explore whether LLM trust and usefulness are enhanced by supplementing answers with external references and limiting persuasive language to curb overreliance. Collaboration with health organizations can help improve the quality of LLMs’ health output.more » « less
- 
            null (Ed.)Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplifica- tion risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk per- ception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimiz- ing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% con- tained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environ- ment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
- 
            Article Authors Metrics Comments Media Coverage Peer Review Abstract Introduction Methods Results Discussion Conclusions Supporting information References Reader Comments Figures Abstract Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    