Abstract In astronomical environments, the high-temperature emission of plasma mainly depends on ion charge states, requiring accurate analysis of the ionization and recombination processes. For various phenomena involving energetic particles, non-Maxwellian distributions of electrons exhibiting high-energy tails can significantly enhance the ionization process. Therefore, accurately computing ionization and recombination rates with non-Maxwellian electron distributions is essential for emission diagnostic analysis. In this work, we report two methods for fitting various non-Maxwellian distributions by using the Maxwellian decomposition strategy. For standardκ-distributions, the calculated ionization and recombination rate coefficients show comparable accuracy to other public packages. Additionally, our methods support arbitrary electron distributions and can be easily extended to updated atomic databases. We apply the above methods to two specific non-Maxwellian distribution scenarios: (i) accelerated electron distributions due to magnetic reconnection revealed in a combined MHD–particle simulation; and (ii) the high-energy truncatedκ-distribution predicted by the exospheric model of the solar wind. During the electron acceleration process, we show that the ionization rates of high-temperature iron ions increase significantly compared to their initial Maxwellian distribution, while the recombination rates may decrease due to the electron distribution changes in low-energy ranges. This can potentially lead to an overestimation of the plasma temperature when analyzing the Fe emission lines under the Maxwellian distribution assumption. For the truncatedκ-distribution in the solar wind, our results show that the ionization rates are lower than those for the standardκ-distribution, while the recombination rates remain similar. This leads to an overestimation of the plasma temperature when assuming aκ-distribution.
more »
« less
Modeling the energetic tail of a dusty plasma's electron energy distribution and its effect on dust grain charge and behavior
A model for a weakly ionized dusty plasma is proposed in which UV or x-ray radiation continuously creates free electrons at high energy, which then cool through collisions with a cold neutral gas before recombining. The transition of a free electron from high energy at birth to low energy at demise implies that the electron energy distribution is not the simple Maxwellian of an isolated system in thermal equilibrium, but instead has a high-energy tail that depends on the recombination time. This tail can have a major effect on dust grain charging because the flux of tail electrons can be substantial even if the density of tail electrons is small. Detailed analytic and numerical calculations of dust grain charging show that situations exist in which a small high-energy tail dominates charge behavior. This implies that dust grain charge in terrestrial and space dusty plasmas may be significantly underestimated if a Maxwellian distribution is assumed and the non-thermal dynamics are neglected.
more »
« less
- Award ID(s):
- 2308558
- PAR ID:
- 10517188
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 30
- Issue:
- 8
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions.more » « less
-
Abstract We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale, magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability. The PIC simulations reveal a nonlinear cyclic evolution of firehose bursts interspersed by periods of stable cooling. We compare the SFHI for electron–positron and electron–ion plasmas. As a byproduct of the growing electron-firehose magnetic-field fluctuations, magnetized ions gain a pressure anisotropy opposite to that of the electrons. If these ions are relativistically hot, we find that they also experience cooling due to collisionless thermal coupling with the electrons, which we argue is mediated by a secondary ion-cyclotron instability. We suggest that the SFHI may be activated in a number of astrophysical scenarios, such as within ejecta from black hole accretion flows and relativistic jets, where the redistribution of energetic electrons from low to high pitch angles may cause transient bursts of radiation.more » « less
-
Abstract The alignment of dust grains with the ambient magnetic field produces polarization of starlight as well as thermal dust emission. Using the archival SOFIA/HAWC+ polarimetric data observed toward the ρ Ophiuchus (Oph) A cloud hosted by a B star at 89 and 154 μ m, we find that the fractional polarization of thermal dust emission first increases with the grain temperature and then decreases once the grain temperature exceeds ≃25–32 K. The latter trend differs from the prediction of the popular RAdiative Torques (RATs) alignment theory, which implies a monotonic increase of the polarization fraction with the grain temperature. We perform numerical modeling of polarized dust emission for the ρ Oph-A cloud and calculate the degree of dust polarization by simultaneously considering the dust grain alignment and rotational disruption by RATs. Our modeling results could successfully reproduce both the rising and declining trends of the observational data. Moreover, we show that the alignment of only silicate grains or a mixture of silicate–carbon grains within a composite structure can reproduce the observational trends, assuming that all dust grains follow a power-law size distribution. Although there are a number of simplifications and limitations to our modeling, our results suggest grains in the ρ Oph-A cloud have a composite structure, and the grain size distribution has a steeper slope than the standard size distribution for the interstellar medium. Combination of SOFIA/HAWC+ data with JCMT observations 450 and 850 μ m would be useful to test the proposed scenario based on grain alignment and disruption by RATs.more » « less
-
We report on the growth, grain enhancement, doping, and electron mobility of cadmium selenide (CdSe) thin films deposited using the thermal evaporation method. The optical measurement shows CdSe is a direct bandgap material with an optical bandgap (Egap) of 1.72 eV. CdSe thin films were deposited on fluorine doped tin oxide glass substrates with different thicknesses, and grain size and mobility were measured on the films. CdCl2 was deposited on the films, and the films were subjected to high temperature treatment for several hours. It was found that both grain sizes increased significantly after CdCl2 treatment. The mobility of electrons was measured using the space charge limited current technique, and it was found that the mobility increased significantly after CdCl2 treatment. It was discovered that postdeposition selenization further improved the electrical properties of CdSe thin films by increasing the electron mobility-lifetime product and the photo/dark conductivity ratio. CdSe films after postselenization also showed significantly lower values for midgap states and Urbach energies for valence band tail states.more » « less
An official website of the United States government

