Social media provide a fertile ground where conspiracy theories and radical ideas can flourish, reach broad audiences, and sometimes lead to hate or violence beyond the online world itself. QAnon represents a notable example of a political conspiracy that started out on social media but turned mainstream, in part due to public endorsement by influential political figures. Nowadays, QAnon conspiracies often appear in the news, are part of political rhetoric, and are espoused by significant swaths of people in the United States. It is therefore crucial to understand how such a conspiracy took root online, and what led so many social media users to adopt its ideas. In this work, we propose a framework that exploits both social interaction and content signals to uncover evidence of user radicalization or support for QAnon. Leveraging a large dataset of 240M tweets collected in the run-up to the 2020 US Presidential election, we define and validate a multivariate metric of radicalization. We use that to separate users in distinct, naturally-emerging, classes of behaviors associated with radicalization processes, from self-declared QAnon supporters to hyper-active conspiracy promoters. We also analyze the impact of Twitter's moderation policies on the interactions among different classes: we discover aspects of moderation that succeed, yielding a substantial reduction in the endorsement received by hyperactive QAnon accounts. But we also uncover where moderation fails, showing how QAnon content amplifiers are not deterred or affected by the Twitter intervention. Our findings refine our understanding of online radicalization processes, reveal effective and ineffective aspects of moderation, and call for the need to further investigate the role social media play in the spread of conspiracies.
more » « less- Award ID(s):
- 2051101
- PAR ID:
- 10517196
- Publisher / Repository:
- International AAAI Conference on Web and Social Media
- Date Published:
- Journal Name:
- Proceedings of the International AAAI Conference on Web and Social Media
- Volume:
- 17
- ISSN:
- 2162-3449
- Page Range / eLocation ID:
- 890 to 901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Fitch, T. ; Lamm, C. ; Leder, H. ; Teßmar-Raible, K. (Ed.)The QAnon conspiracy posits that Satan-worshiping Democrats operate a covert child sex-trafficking operation, which Donald Trump is destined to expose and annihilate. Emblematic of the ease with which political misconceptions can spread through social media, QAnon originated in late 2017 and rapidly grew to shape the political beliefs of millions. To illuminate the process by which a conspiracy theory spreads, we report two computational studies examining the social network structure and semantic content of tweets produced by users central to the early QAnon network on Twitter. Using data mined in the summer of 2018, we examined over 800,000 tweets about QAnon made by about 100,000 users. The majority of users disseminated rather than produced information, serving to create an online echochamber. Users appeared to hold a simplistic mental model in which political events are viewed as a struggle between antithetical forces—both observed and unobserved—of Good and Evil.more » « less
-
The disruptive offline mobilization of participants in online conspiracy theory (CT) discussions has highlighted the importance of understanding how online users may form radicalized conspiracy beliefs. While prior work researched the factors leading up to joining online CT discussions and provided theories of how conspiracy beliefs form, we have little understanding of how conspiracy radicalization evolves after users join CT discussion communities. In this paper, we provide the empirical modeling of various radicalization phases in online CT discussion participants.To unpack how conspiracy engagement is related to radicalization, we first characterize the users' journey through CT discussions via conspiracy engagement pathways. Specifically, by studying 36K Reddit users through their 169M contributions, we uncover four distinct pathways of conspiracy engagement: steady high, increasing, decreasing, and steady low.We further model three successive stages of radicalization guided by prior theoretical works.Specific sub-populations of users, namely those on steady high and increasing conspiracy engagement pathways, progress successively through various radicalization stages. In contrast, users on the decreasing engagement pathway show distinct behavior: they limit their CT discussions to specialized topics, participate in diverse discussion groups, and show reduced conformity with conspiracy subreddits. By examining users who disengage from online CT discussions, this paper provides promising insights about conspiracy recovery process.more » « less
-
Online discussion platforms provide a forum to strengthen and propagate belief in misinformed conspiracy theories. Yet, they also offer avenues for conspiracy theorists to express their doubts and experiences of cognitive dissonance. Such expressions of dissonance may shed light on who abandons misguided beliefs and under what circumstances. This paper characterizes self-disclosures of dissonance about QAnon-a conspiracy theory initiated by a mysterious leader "Q" and popularized by their followers ?anons"-in conspiratorial subreddits. To understand what dissonance and disbelief mean within conspiracy communities, we first characterize their social imaginaries-a broad understanding of how people collectively imagine their social existence. Focusing on 2K posts from two image boards, 4chan and 8chan, and 1.2 M comments and posts from 12 subreddits dedicated to QAnon, we adopt a mixed-methods approach to uncover the symbolic language representing the movement,expectations,practices,heroes and foes of the QAnon community. We use these social imaginaries to create a computational framework for distinguishing belief and dissonance from general discussion about QAnon, surfacing in the 1.2M comments. We investigate the dissonant comments to characterize the dissonance expressed along QAnon social imaginaries. Further, analyzing user engagement with QAnon conspiracy subreddits, we find that self-disclosures of dissonance correlate with a significant decrease in user contributions and ultimately with their departure from the community. Our work offers a systematic framework for uncovering the dimensions and coded language related to QAnon social imaginaries and can serve as a toolbox for studying other conspiracy theories across different platforms. We also contribute a computational framework for identifying dissonance self-disclosures and measuring the changes in user engagement surrounding dissonance. Our work provide insights into designing dissonance based interventions that can potentially dissuade conspiracists from engaging in online conspiracy discussion communities.more » « less
-
Abstract While a robust literature on the psychology of conspiracy theories has identified dozens of characteristics correlated with conspiracy theory beliefs, much less attention has been paid to understanding the generalized predisposition towards interpreting events and circumstances as the product of supposed conspiracies. Using a unique national survey of 2015 U.S. adults from October 2020, we investigate the relationship between this predisposition—conspiracy thinking—and 34 different psychological, political, and social correlates. Using conditional inference tree modeling—a machine learning-based approach designed to facilitate prediction using a flexible modeling methodology—we identify the characteristics that are most useful for orienting individuals along the conspiracy thinking continuum, including (but not limited to): anomie, Manicheanism, support for political violence, a tendency to share false information online, populism, narcissism, and psychopathy. Altogether, psychological characteristics are much more useful in predicting conspiracy thinking than are political and social characteristics, though even our robust set of correlates only partially accounts for variance in conspiracy thinking.
-
Recent years have witnessed an explosion of science conspiracy videos on the Internet, challenging science epistemology and public understanding of science. Scholars have started to examine the persuasion techniques used in conspiracy messages such as uncertainty and fear yet, little is understood about the visual narratives, especially how visual narratives differ in videos that debunk conspiracies versus those that propagate conspiracies. This paper addresses this gap in understanding visual framing in conspiracy videos through analyzing millions of frames from conspiracy and counter-conspiracy YouTube videos using computational methods. We found that conspiracy videos tended to use lower color variance and brightness, especially in thumbnails and earlier parts of the videos. This paper also demonstrates how researchers can integrate textual and visual features in machine learning models to study conspiracies on social media and discusses the implications of computational modeling for scholars interested in studying visual manipulation in the digital era. The analysis of visual and textual features presented in this paper could be useful for future studies focused on designing systems to identify conspiracy content on the Internet.more » « less