skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Deficit Irrigation in Pepper Plants (Capsicum annuum) Grown Under Greenhouse Conditions
Water is a vital component for agricultural productivity; however, freshwater supplies are limited and are dwindling worldwide. Water for agriculture is an extreme issue for the southern region of Texas, where water supplies from reservoirs are used for municipal, industrial, and agricultural purposes. Due to intensive and prolonged intermittent droughts in south Texas, freshwater sources can deplete rapidly leaving growers on water restrictions. One potential solution of reducing the amount of water for crops is by applying less water than recommended crop evapotranspiration requires. Deficit irrigation (DI) is the practice of applying lower amounts of water than general crop requirements to increase water use efficiency for economic benefit. Deficit irrigation practice has been shown to be beneficial to some fruit and vegetable crops, but to a lesser extent in south Texas for mild heat pepper plant production. The purpose of this project was to analyze how watering jalapeño and serrano pepper plants at different levels of DI would impact plant growth and fruit yield in a greenhouse study. Deficit irrigation treatments were performed by irrigating pots at increasing the number of days between irrigation events (water application: 2, 4, 8, and 12 days) to create increasing water stress levels to plants. Plant growth and biomass data was collected to determine the impact of increasing deficit irrigation on plant shoot productivity. In both varieties, plant biomass steadily decreased as water application decreased. Serrano peppers grown at both 4d and 2d between water application events produced identical yields, however, increased water stress immediately impacted jalapeño peppers with lower yield. The encouraging results from serrano peppers suggest a potential economic benefit for deficit irrigation water use practices applied to this pepper variety.  more » « less
Award ID(s):
1914745
PAR ID:
10517207
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Iris Publishers
Date Published:
Journal Name:
World Journal of Agriculture and Soil Science
ISSN:
2641-6379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited natural water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily by market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand. 
    more » « less
  2. null (Ed.)
    The challenge of meeting growing food and energy demand while also mitigating climate change drives the development and adoption of renewable technologies ad approaches. Agrivoltaic systems are an approach that allows for both agricultural and electrical production on the same land area. These systems have the potential to reduced water demand and increase the overall water productivity of certain crops. We observed the microclimate and growth characteristics of Tomato plants (Solanum lycopersicon var. Legend) grown within three locations on an Agrivoltaic field (control, interrow, and below panels) and with two different irrigation treatments (full and deficit). Total crop yield was highest in the control fully irrigated areas a, b (88.42 kg/row, 68.13 kg/row), and decreased as shading increased, row full irrigated areas a, b had 53.59 kg/row, 32.76 kg/row, panel full irrigated areas a, b had (33.61 kg/row, 21.64 kg/row). Water productivity in the interrow deficit treatments was 53.98 kg/m3 greater than the control deficit, and 24.21 kg/m3 greater than the panel deficit, respectively. These results indicate the potential of Agrivoltaic systems to improve water productivity even for crops that are traditionally considered shade-intolerant. 
    more » « less
  3. Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability. 
    more » « less
  4. This paper investigates the response of five tomato and five pepper varieties to native arbuscular mycorrhizal (AM) fungal inoculation in an organic farming system. The field experiment was conducted across a growing season at a working organic farm in Lawrence, KS, USA. The researchers hypothesized that native AM fungi inoculation would improve crop biomass production for both crop species, but that the magnitude of response would depend on crop cultivar. The results showed that both crops were significantly positively affected by inoculation. AM fungal inoculation consistently improved total pepper biomass throughout the experiment (range of +2% to +8% depending on the harvest date), with a +3.7% improvement at the final harvest for inoculated plants. An interaction between pepper variety and inoculation treatment was sometimes observed, indicating that some pepper varieties were more responsive to AM fungi than others. Beginning at the first harvest, tomatoes showed a consistent positive response to AM fungal inoculation among varieties. Across the experiment, AM fungi-inoculated tomatoes had +10% greater fruit biomass, which was driven by a +20% increase in fruit number. The study highlights the potential benefits of using native AM fungi as a soil amendment in organic farmed soils to improve pepper and tomato productivity. 
    more » « less
  5. Li, Chengfang (Ed.)
    Irrigation is important in many crop production systems. However, irrigation water can be a carrier of plant pathogens that can enter the system and spread to fields, resulting in crop damage and yield losses. The Lower Rio Grande Valley of South Texas is an important area for agricultural production which depends on the Rio Grande River as a source of water for irrigation. Thus, the presence of plant pathogens in the Rio Grande River could have important implications for crop productivity in the region. Cultured-based methods and molecular identification methods are used for monitoring plant pathogens in irrigation water. However, these methods are labor-intensive and just detect targeted pathogens. To overcome these limitations, in this study, the ITS2 amplicon metagenomic method was applied for evaluating the fungal diversity, composition, and presence of fungal plant pathogens in irrigation water from the Rio Grande River as it leaves the water reservoir (WR) and it arrives at an irrigation valve at a farm (FA). Results from the Shannon (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) and Simpson indices (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) showed that there are significant differences in the fungal diversity and community structure between the two locations and the PCA analysis showed a clear differentiation between both fungal communities. Several OTUs identified in both locations included potential plant pathogens from diverse genera including Cladosporium, Exserohilum, and Nigrospora, while others such as Colletotrichum and Plectosphaerella were found only in one of the two locations assessed. This work indicates that microbes, including plant pathogens, may enter or exit throughout the irrigation-water distribution system, thereby modifying the microbial community composition along the way. Understanding the dynamics of plant pathogen movement in irrigation water systems can help growers identify risk factors to develop measures to mitigate those risks. This study also shows the usefulness of the metagenomic approach for detecting and monitoring plant pathogen in irrigation water. 
    more » « less