skip to main content


Title: Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand
Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.  more » « less
Award ID(s):
1847334
NSF-PAR ID:
10332029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many tropical regions are experiencing an intensification of drought, with increasing severity and frequency. The ecosystem response to these changes is still highly uncertain. On short time scales (from diurnal to seasonal), tropical forests respond to water stress by physiological controls, such as stomatal regulation and phenological adjustment, to cope with increasing atmospheric water demand and reduced water supply. However, the interactions among biological processes and co‐varying environmental factors that determine the ecosystem‐level fluxes are still unclear. Furthermore, climate variability at longer time scales, such as that generated by ENSO, produces less predictable effects because it depends on a highly stochastic combination of factors that might vary among forests and even between events in the same forest. This study will present some emerging patterns of response to water stress from 5 years of water, carbon, and energy fluxes observed on a seasonal tropical forest in central Panama, including an increase in productivity during the 2015 El Niño. These responses depend on the combination of environmental factors experienced by the forest throughout the seasonal cycle, in particular, increase in solar radiation, stimulating productivity, and increasing vapor pressure deficit (VPD) and decreasing soil moisture, limiting stomata opening. These results suggest a critical role of plant hydraulics in mediating the response to water stress over a broad range of temporal scales (diurnal, intraseasonal, seasonal, and interannual), by acclimating canopy conductance to light and VPD during different soil moisture regimes. A multilayer photosynthesis model coupled with a plant hydraulics scheme can reproduce these complex responses. However, results depend critically on parameters regulating water transport efficiency and the cost of water stress. As these costs have not been properly identified and quantified yet, more empirical research is needed to elucidate physiological mechanisms of hydraulic failure and recover, for example embolism repair and xylem regrowth.

     
    more » « less
  2. Abstract. Plant transpiration downregulation in the presence of soil water stress is a critical mechanism for predicting global water, carbon, and energy cycles. Currently, many terrestrial biosphere models (TBMs) represent this mechanism with an empirical correction function (β) of soil moisture – a convenient approach that can produce large prediction uncertainties. To reduce this uncertainty, TBMs have increasingly incorporated physically based plant hydraulic models (PHMs). However, PHMs introduce additional parameter uncertainty and computational demands. Therefore, understanding why and when PHM and β predictions diverge would usefully inform model selection within TBMs. Here, we use a minimalist PHM to demonstrate that coupling the effects of soil water stress and atmospheric moisture demand leads to a spectrum of transpiration responses controlled by soil–plant hydraulic transport (conductance). Within this transport-limitation spectrum, β emerges as an end-member scenario of PHMs with infinite conductance, completely decoupling the effects of soil water stress and atmospheric moisture demand on transpiration. As a result, PHM and β transpiration predictions diverge most for soil–plant systems with low hydraulic conductance (transport-limited) that experience high variation in atmospheric moisture demand and have moderate soil moisture supply for plants. We test these minimalist model results by using a land surface model at an AmeriFlux site. At this transport-limited site, a PHM downregulation scheme outperforms the β scheme due to its sensitivity to variations in atmospheric moisture demand. Based on this observation, we develop a new “dynamic β” that varies with atmospheric moisture demand – an approach that overcomes existing biases within β schemes and has potential to simplify existing PHM parameterization and implementation. 
    more » « less
  3. Abstract

    An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.

     
    more » « less
  4. Abstract

    Drought occurrence is increasing due to anthropogenic climate change. Drought can negatively affect plants via reduced water below‐ground and increased evaporative demand or vapour pressure deficit (VPD) above‐ground. Past work has shown that plant diversity can ameliorate the negative effects of drought in plant communities, but these results are inconsistent between experimental and natural drought studies. Furthermore, while studies on the negative effects of reduced soil moisture on plant growth in drought experiments are abundant, the effects of predicted increases in atmospheric VPD have been neglected.

    We directly manipulated atmospheric relative humidity in a biodiversity and drought experiment at the California State University, Los Angeles (CA, USA) under three atmospheric conditions (ambient, dehumidified and humidified), two treatments of native perennial grass diversity (monoculture and eight species polyculture) and two soil drought treatments (control and drought). We assessed both polyculture plant community and individual species (Poa secunda) responses to atmospheric drought and soil drought.

    We found that soil drought only limits above‐ground biomass production when atmospheric conditions are also dry. We also found thatP. secundawas limited by increased competition in polyculture when ambient atmospheric conditions were humid but was facilitated by diversity when atmospheric conditions were dry.

    Synthesis. Higher diversity ecosystems may be capable of protecting individual species from the negative effects of drought (facilitation). Without careful experimental manipulation of atmospheric drought, this important mechanism will be missed.

     
    more » « less
  5. As blue water resources become increasingly scarce with more frequent droughts and overuse, irrigated agriculture faces significant challenges to reduce its water footprint while maintaining high levels of crop production. Building soil health has been touted as an important means of enhancing the resilience of agroecosystems to drought, mainly with a focus in rainfed systems reliant on green water through increases in infiltration and soil water storage. Yet, green water often contributes only a small fraction of the total crop water budget in irrigated agricultural regions. To scope the potential for how soil health management could impact water resources in irrigated systems, we review how soil health affects soil water flows, plant–soil–microbe interactions, and plant water capture and productive use. We assess how these effects could interact with irrigation management to help make green and blue water use more sustainable. We show how soil health management could (1) optimize green water availability (e.g., by increasing infiltration and soil water storage), (2) maximize productive water flows (e.g., by reducing evaporation and supporting crop growth), and (3) reduce blue water withdrawals (e.g., by minimizing the impacts of water stress on crop productivity). Quantifying the potential of soil health to improve water resource management will require research that focuses on outcomes for green and blue water provisioning and crop production under different irrigation and crop management strategies. Such information could be used to improve and parameterize finer scale crop, soil, and hydraulic models, which in turn must be linked with larger scale hydrologic models to address critical water-resources management questions at watershed or regional scales. While integrated soil health-water management strategies have considerable potential to conserve water—especially compared to irrigation technologies that enhance field-level water use efficiency but often increase regional water use—transitions to these strategies will depend on more than technical understanding and must include addressing interrelated structural and institutional barriers. By scoping a range of ways enhancing soil health could improve resilience to water limitations and identifying key research directions, we inform research and policy priorities aimed at adapting irrigated agriculture to an increasingly challenging future. 
    more » « less