skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergence of quasiparticles in a doped Mott insulator
Abstract How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-Tccuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La2−xSrxCuO4(0 ≤x≤ 0.15). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-Tccuprates.  more » « less
Award ID(s):
2038011
PAR ID:
10517240
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Communications Physics
Date Published:
Journal Name:
Communications Physics
Volume:
3
Issue:
1
ISSN:
2399-3650
Page Range / eLocation ID:
210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Search for novel electronically ordered states of matter emerging near quantum phase transitions is an intriguing frontier of condensed matter physics. In ruthenates, the interplay between Coulomb correlations among the 4delectronic states and their spin-orbit interactions, lead to complex forms of electronic phenomena. Here we investigate the double layered Sr3(Ru1−xMnx)2O7and its doping-induced quantum phase transition from a metal to an antiferromagnetic Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope, we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap at the Fermi energy that develops with doping to form a weak Mott insulating state. Near the quantum phase transition, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings bear a resemblance to the universal charge order in the pseudogap phase of cuprates and demonstrate the ubiquity of charge order that emanates from doped Mott insulators. 
    more » « less
  2. The Hubbard model is an iconic model in quantum many-body physics and has been intensely studied, especially since the discovery of high-temperature cuprate superconductors. Combining the complementary capabilities of two computational methods, we found superconductivity in both the electron- and hole-doped regimes of the two-dimensional Hubbard model with next-nearest-neighbor hopping. In the electron-doped regime, superconductivity was weaker and was accompanied by antiferromagnetic Néel correlations at low doping. The strong superconductivity on the hole-doped side coexisted with stripe order, which persisted into the overdoped region with weaker hole-density modulation. These stripe orders varied in fillings between 0.6 and 0.8. Our results suggest the applicability of the Hubbard model with next-nearest hopping for describing cuprate high–transition temperature (Tc) superconductivity. 
    more » « less
  3. null (Ed.)
    The recent observation of superconductivity in N d 0.8 S r 0.2 N i O 2 has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott–Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally resolved electron energy-loss spectroscopy to directly probe the Mott–Hubbard character of N d 1 − x S r x N i O 2 . Upon doping, we observe emergent hybridization reminiscent of the Zhang–Rice singlet via the oxygen-projected states, modification of the Nd 5d states, and the systematic evolution of Ni 3d hybridization and filling. These experimental data provide direct evidence for the multiband electronic structure of the superconducting infinite-layer nickelates, particularly via the effects of hole doping on not only the oxygen but also nickel and rare-earth bands. 
    more » « less
  4. In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (HC2) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high-TCsuperconductivity. Here we present measurements of the low-temperature normal-state thermopower (S) of the electron-doped cuprate superconductor La2−xCexCuO4(LCCO) fromx= 0.11–0.19. We observe quantum critical S / T versus l n ( 1 / T ) behavior over an unexpectedly wide doping rangex= 0.15–0.17 above the QCP (x= 0.14), with a slope that scales monotonically with the superconducting transition temperature (TCwith H = 0). The presence of quantum criticality over a wide doping range provides a window on the criticality. The thermopower behavior also suggests that the critical fluctuations are linked withTC. Above the superconductivity dome, atx= 0.19, a conventional Fermi-liquid S T behavior is found for T 40 K. 
    more » « less
  5. Abstract Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1−xCaxOsO6(0 < x < 1), unveiling the formation ofspin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2NaOsO6(BNOO), into a bipolaron 5d2Jeff = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1BNOO to d2Ba2CaOsO6(BCOO). 
    more » « less