skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 10, 2025

Title: Coexistence of superconductivity with partially filled stripes in the Hubbard model

The Hubbard model is an iconic model in quantum many-body physics and has been intensely studied, especially since the discovery of high-temperature cuprate superconductors. Combining the complementary capabilities of two computational methods, we found superconductivity in both the electron- and hole-doped regimes of the two-dimensional Hubbard model with next-nearest-neighbor hopping. In the electron-doped regime, superconductivity was weaker and was accompanied by antiferromagnetic Néel correlations at low doping. The strong superconductivity on the hole-doped side coexisted with stripe order, which persisted into the overdoped region with weaker hole-density modulation. These stripe orders varied in fillings between 0.6 and 0.8. Our results suggest the applicability of the Hubbard model with next-nearest hopping for describing cuprate high–transition temperature (Tc) superconductivity.

 
more » « less
Award ID(s):
2110041
PAR ID:
10544602
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
science.org
Date Published:
Journal Name:
Science
Volume:
384
Issue:
6696
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stephen E. Nagler (Ed.)
    The relevance of the single-band two-dimensional Hubbard model to superconductivity in the doped cuprates has recently been questioned, based on density matrix renormalization group (DMRG) computations that found superconductivity over an unrealistically broad doping region upon electron-doping, yet a complete absence of superconductivity for hole-doping. We report very similar results from DMRG calculations on a Cu2O3 twoleg ladder within the parent three-band correlated-electron Hamiltonian. The strong asymmetry found in our calculations are in contradiction to the deep and profound symmetry in the experimental phase diagrams of electron- and hole-doped cuprate superconductors, as seen from the occurrence of quantum critical points within the superconducting domes in both cases that are characterized by Fermi surface reconstruction, large jumps in carrier density, and strange metal behavior. 
    more » « less
  2. Do charge modulations compete with electron pairing in high-temperature copper oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultraquantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates. 
    more » « less
  3. Realistic description of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body approaches involve generic model Hamiltonians and do not account for the interplay between the spin, charge, and lattice degrees of freedom. Here, by deploying the recently constructed strongly constrained and appropriately normed (SCAN) density functional, we show how the landscape of competing stripe and magnetic phases can be addressed on a first-principles basis both in the parent insulator YBa2Cu3O6and the near-optimally doped YBa2Cu3O7as archetype cuprate compounds. In YBa2Cu3O7, we find many stripe phases that are nearly degenerate with the ground state and may give rise to the pseudogap state from which the high-temperature superconducting state emerges. We invoke no free parameters such as the HubbardU, which has been the basis of much of the existing cuprate literature. Lattice degrees of freedom are found to be crucially important in stabilizing the various phases.

     
    more » « less
  4. We present a density matrix renormalization group study of the doped one-dimensional (1D) Hubbard-Su-Schrieffer-Heeger (Hubbard-SSH) model, where the atomic displacements linearly modulate the nearest-neighbor hopping integrals. Focusing on an optical variant of the model in the strongly correlated limit relevant for cuprate spin chains, we examine how the SSH interaction modifies the model's ground- and excited-state properties. The SSH coupling weakly renormalizes the model's single- and two-particle response functions for electron-phonon (𝑒−ph) coupling strengths below a parameter-dependent critical value 𝑔c. For larger 𝑒−ph coupling, the sign of the effective hopping integrals changes for a subset of orbitals, which drives a lattice dimerization distinct from the standard nesting-driven picture in 1D. The spectral weight of the one- and two-particle dynamical response functions are dramatically rearranged across this transition, with significant changes in the ground-state correlations. We argue that this dimerization results from the breakdown of the linear approximation for the 𝑒−ph coupling and thus signals a fundamental limitation of the linear SSH interaction. Our results have consequences for our understanding of how SSH-like interactions can enter the physics of strongly correlated quantum materials, including the recently synthesized doped cuprate spin chains. 
    more » « less
  5. Abstract

    How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-Tccuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La2−xSrxCuO4(0 ≤x≤ 0.15). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-Tccuprates.

     
    more » « less