Abstract The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H.
more »
« less
Allyl‐Allyl Coupling Promoted by Catalyst Systems with two Palladium Atoms – A Plethora of Potentially Pericyclic Processes
Abstract Recently, Huang and co‐workers reported a catalytic reaction that utilizes H2as the sole reductant for a C−C coupling of allyl groups with yields up to 96 %. Here we use computational quantum chemistry to identify several key features of this reaction that provide clarity on how it proceeds. We propose the involvement of a Pd−Pd bound dimer precatalyst, demonstrate the importance of ligand π‐π interactions and counterions, and identify a new, energetically viable, mechanism involving two dimerized, outer‐sphere reductive elimination transition structures that determine both the rate and selectivity. Although we rule out the previously proposed transmetalation step on energetic grounds, we show it to have an unusual aromatic transition structure in which two Pd atoms support rearranging electrons. The prevalence of potential metal‐supported pericyclic reactions in this system suggests that one should consider such processes regularly, but the results of our calculations also indicate that one should do so with caution.
more »
« less
- Award ID(s):
- 2154083
- PAR ID:
- 10517324
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The title compound, C 10 H 13 NO 2 S, was synthesized by a nucleophilic substitution reaction between allyl amine and p -toluenesulfonyl chloride. The sulfonate S—O bond lengths are 1.4282 (17) and 1.4353 (17) Å, and the C—N—S—C torsion angle involving the sulfonamide moiety is −61.0 (2)°. In the crystal, centrosymmetric dimers of the title compound are present via intermolecular N—H...O hydrogen bonds between sulfonamide groups. These dimers are linked into ribbons along the c -axis direction through offset π–π interactions.more » « less
-
Abstract Transition metal‐catalyzed C−H bond oxidation of free carboxylic acid stands as an economic, selective, and efficient strategy to generate lactones, hydroxylated products, and acetoxylated products and attracts much of the chemists’ attention. Herein, we performed a density functional theory study on the mechanism and selectivity in Pd‐catalyzed and MPAA ligand‐enabled C−H bond acetoxylation reaction. It was found that the ligand, base, and substrate are important in determining the reaction mechanism and the selectivity. The acetic anhydride additive is critical in leading the reaction to be acetoxylation, instead of the lactonization, through a facile σ‐bond metathesis mechanism that leads to the Pd‐OAc in‐termediate. Our study sheds light on the further development of transition metal‐catalyzed C−H bond oxidation reactions.more » « less
-
Abstract Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd‐based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2phase. Instead, using a thermal quenching method, we prepared a pure‐phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β‐unsaturated aldehydes, highest in reported Pd‐based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn‐ to Pd3Sn2‐structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.more » « less
-
The reaction of dibenzonorcarynyliden(e/oid) with phencyclone was recently reported to give a congested spiropentane withendostereochemistry. Herein we report that, in sharp contrast, an analogous reaction using tetracyclone, instead of phencyclone, gives the highly crowded title spiropentane but withexostereochemistry as determined by X-ray crystallography. This new tetracyclone adduct (C44H30O) crystallizes upon slow evaporation from hexanes/ethyl acetate in the monoclinic crystal system andP21/n(No. 14) space group. It has one molecule in the asymmetric unit and four molecules per unit cell. DLPNO-CCSD(T)/def2-TZVP//B3LYP/def2-SVP calculations indicate that theendospiropentane diastereomers from phencyclone and tetracyclone are both more stable than the correspondingexoforms by 6.68 and 5.35 kcal mol−1, respectively. As noted previously in the phencyclone system, favorable π-stacking interactions between the two flat biphenyl moieties in the product and transition state may lead to the preferential formation of theendodiastereomer. However, the ability of the phenyl rings in the 3,4-position of the tetracyclone component to rotate could introduce destabilizing steric interactions in the transition state that hinder formation of theendodiastereomer in favor of the less thermodynamically stableexoisomer.more » « less
An official website of the United States government
