Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.
more »
« less
Energy inputs imprint seasonality and fractal structure on river metabolic regimes
Abstract The temporal structures of gross primary production (GPP) and ecosystem respiration (ER) vary across time scales in response to complex interactions among dynamic drivers (e.g., flow, light, temperature, organic matter supply). To explore emergent patterns of river metabolic variation, we applied frequency‐domain analysis to multiyear records of metabolism across 87 US rivers. We observed a dominant annual periodicity in metabolic variation and universal fractal scaling (i.e., power spectral density inversely correlated with frequency) at subannual frequencies, suggesting these are foundational temporal structures of river metabolic regimes. Frequency‐domain patterns of river metabolism aligned best with drivers related to energy inputs: benthic light for GPP and GPP for ER. Simple river metabolism models captured frequency‐domain patterns when parameterized with appropriate energy inputs but neglecting temperature controls. These results imply that temporal variation of energy supply imprints directly on metabolic signals and that frequency‐domain patterns provide benchmark properties to predict river metabolic regimes.
more »
« less
- Award ID(s):
- 2000649
- PAR ID:
- 10517331
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 634-643
- Size(s):
- p. 634-643
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although time series in ecosystem metabolism are well characterized in small and medium rivers, patterns in the world's largest rivers are almost unknown. Large rivers present technical difficulties, including depth measurements, gas exchange (, ) estimates, and the presence of large dams, which can supersaturate gases. We estimated reach‐scale metabolism for the Hanford Reach of the Columbia River (Washington state, USA), a free‐flowing stretch with an average discharge of 3173 . We calculated from semi‐empirical models and directly estimated it from tracer measurements. We fixed at the median value from these calculations (0.5 ), and used maximum likelihood to estimate reach‐scale, open‐channel metabolism. Both gross primary production (GPP) and ecosystem respiration (ER) were high (GPP range: 0.3–30.8 g , ER range: 0.8–30.6 g ), with peak GPP and ER occurring in the late summer or early fall. GPP increased exponentially with temperature, consistent with metabolic theory, while light was seasonally saturating. Annual average GPP, estimated at 1500 g carbon , was in the top 2% of estimates for other rivers. GPP and ER were tightly coupled and 90% of GPP was immediately respired, resulting in net ecosystem production near 0. Patterns in the Hanford Reach contrast with those in small‐medium rivers, suggesting that metabolism magnitudes and patterns in large rivers may not be simply scaled from knowledge of smaller rivers.more » « less
-
Abstract Global change is influencing production and respiration in ecosystems across the globe. Lakes in particular are changing in response to climatic variability and cultural eutrophication, resulting in changes in ecosystem metabolism. Although the primary drivers of production and respiration such as the availability of nutrients, light, and carbon are well known, heterogeneity in hydrologic setting (for example, hydrological connectivity, morphometry, and residence) across and within regions may lead to highly variable responses to the same drivers of change, complicating our efforts to predict these responses. We explored how differences in hydrologic setting among lakes influenced spatial and inter annual variability in ecosystem metabolism, using high-frequency oxygen sensor data from 11 lakes over 8 years. Trends in mean metabolic rates of lakes generally followed gradients of nutrient and carbon concentrations, which were lowest in seepage lakes, followed by drainage lakes, and higher in bog lakes. We found that while ecosystem respiration (ER) was consistently higher in wet years in all hydrologic settings, gross primary production (GPP) only increased in tandem in drainage lakes. However, interannual rates of ER and GPP were relatively stable in drainage lakes, in contrast to seepage and bog lakes which had coefficients of variation in metabolism between 22–32%. We explored how the geospatial context of lakes, including hydrologic residence time, watershed area to lake area, and landscape position influenced the sensitivity of individual lake responses to climatic variation. We propose a conceptual framework to help steer future investigations of how hydrologic setting mediates the response of metabolism to climatic variability.more » « less
-
Abstract Empirical evidence and theory suggest that climate warming and an increase in the frequency and duration of drying events will alter the metabolic balance of freshwater ecosystems. However, the impacts of climate change on ecosystem metabolism may depend on whether energy inputs are of autochthonous or allochthonous origin. To date, few studies have examined how warming and drying may interact to alter stream metabolism, much less how their impacts may depend on the energy‐base of the food web.To address this research gap, we conducted a multi‐factorial experiment using outdoor mesocosms to investigate the individual and synergistic effects of warming and drought on metabolic processes in stream mesocosms with green (algal‐based) vs. mixed (algal‐ and detritus‐based) vs. brown (detritus‐based) energy pathways.We set up 48 mesocosms with one of three different levels of shade and leaf litter input combinations to create mesocosms with different primary energy channels. In addition, we warmed half of the mesocosms by ~2–3°C. We assessed changes in ecosystem respiration (ER), gross primary production (GPP), net ecosystem production (NEP) and organic matter biomass in warmed and ambient temperature mesocosms before a 24 day drying event and after rewetting.Surprisingly, experimental warming had little effect on metabolic processes. Drying, however, led to decreased rates of ER and GPP and led to an overall reduction in NEP. Although the effects of drying were similar across energy channel treatments, reductions in ER and GPP were primarily driven by decreases in biomass of benthic and filamentous algae.Overall, we demonstrate that drying led to lower rates of NEP in mesocosms regardless of energy inputs. While warming showed little effect in our study, our results suggest that an increase in the frequency of stream drying events could greatly alter the metabolic balance of many aquatic ecosystems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract High‐resolution data are improving our ability to resolve temporal patterns and controls on river productivity, but we still know little about the emergent patterns of primary production at river‐network scales. Here, we estimate daily and annual river‐network gross primary production (GPP) by applying characteristic temporal patterns of GPP (i.e., regimes) representing distinct river functional types to simulated river networks. A defined envelope of possible productivity regimes emerges at the network‐scale, but the amount and timing of network GPP can vary widely within this range depending on watershed size, productivity in larger rivers, and reach‐scale variation in light within headwater streams. Larger rivers become more influential on network‐scale GPP as watershed size increases, but small streams with relatively low productivity disproportionately influence network GPP due to their large collective surface area. Our initial predictions of network‐scale productivity provide mechanistic understanding of the factors that shape aquatic ecosystem function at broad scales.more » « less
An official website of the United States government
