Ecosystem metabolism of freshwater ecosystems has been studied for several decades, with theory and synthesis largely derived from temperate streams and rivers in North America and Europe. Advances in sensor technology and modeling have opened a wider range of streams to be included to test theories beyond temperate streams. In this paper, we review and synthesize ecosystem metabolism data from tropical streams and rivers to determine to what extent the constraints of metabolism measured in temperate streams are similar in tropical streams. We compiled 202 measurements of gross primary productivity (GPP) and ecosystem respiration (ER) from 83 tropical streams spanning 22.2°S to 18.4°N. Overall, tropical streams were heterotrophic (ER > GPP), with GPP ranging from 0.01 to 11.7 g O2m−2d−1and ER ranging from −0.2 to −42.1 g O2m−2d−1, similar on average to rates reviewed from temperate streams, but with higher maximum ER in tropical streams. Gross primary productivity increased with watershed area; a result also observed in temperate streams. ER decreased with elevated phosphorus and higher annual rainfall. We constructed a structural equation model that explained greater variation of ER (74%) than GPP (26%), and reflects similar drivers, such as land‐use and watershed area, as in temperate streams. We conclude that tropical stream ecosystem metabolism has similar drivers as temperate streams, and a warmer and wetter climate and human use of tropical lands will influence metabolic rates in streams.
- PAR ID:
- 10331823
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 8
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We rarely consider light limitation in ecosystem productivity, yet light limitation is a major constraint on river autotrophy. Because the light that reaches benthic autotrophs must first pass through terrestrial vegetation and an overlying water column that can be loaded with sediments or colored organic material, there is strong selection for river autotrophs to have high light use efficiencies (LUEs), that is, the efficiency at which light energy is converted to biomass. In contrast to prior studies that have estimated river LUE on single days, we calculated continuous LUE over more than 6 full years for 64 free‐flowing rivers across the United States. This dataset represents the largest compilation of continuous estimates of daily rates of gross primary productivity (GPP) and daily light inputs from which we calculated daily estimates of LUE. Early estimates of LUE in rivers found that clearwater springs with stable flows could achieve LUEs of 4%, much higher than LUEs reported for terrestrial plants. We found that 53% of the rivers in our dataset have LUEs that exceed 4% on at least one day of their time series. Because of the high variability in daily LUE, measurements taken on any given day may misrepresent a river ecosystem's annual LUE. Though most rivers share a high potential, the mean annual LUE of all rivers in our dataset is much lower, only 0.5%. We found that rivers with more variable flow regimes had lower annual LUEs, which indicates that LUE is constrained by hydrologic disturbances that remove, bury, or shade autotrophic biomass. Comparisons of LUE across ecosystems allow us to reframe our view of rivers, by recognizing the high efficiency with which they convert light to biomass compared with lentic, marine, and terrestrial ecosystems.
-
Abstract High‐resolution data are improving our ability to resolve temporal patterns and controls on river productivity, but we still know little about the emergent patterns of primary production at river‐network scales. Here, we estimate daily and annual river‐network gross primary production (GPP) by applying characteristic temporal patterns of GPP (i.e., regimes) representing distinct river functional types to simulated river networks. A defined envelope of possible productivity regimes emerges at the network‐scale, but the amount and timing of network GPP can vary widely within this range depending on watershed size, productivity in larger rivers, and reach‐scale variation in light within headwater streams. Larger rivers become more influential on network‐scale GPP as watershed size increases, but small streams with relatively low productivity disproportionately influence network GPP due to their large collective surface area. Our initial predictions of network‐scale productivity provide mechanistic understanding of the factors that shape aquatic ecosystem function at broad scales.
-
Abstract Drought is common in rivers, yet how this disturbance regulates metabolic activity across network scales is largely unknown. Drought often lowers gross primary production (GPP) and ecosystem respiration (ER) in small headwaters but by contrast can enhance GPP and cause algal blooms in downstream estuaries. We estimated ecosystem metabolism across a nested network of 13 reaches from headwaters to the main stem of the Connecticut River from 2015 through 2017, which encompassed a pronounced drought. During drought, GPP and ER increased, but with greater enhancement in larger rivers. Responses of GPP and ER were partially due to warmer temperatures associated with drought, particularly in the larger rivers where temperatures during summer drought were > 10°C higher than typical summer baseflow. The larger rivers also had low canopy cover, which allowed primary producers to take advantage of lower turbidity and fewer cloudy days during drought. We conclude that GPP is enhanced by higher temperature, lower turbidity, and longer water residence times that are all a function of low discharge, but ecosystem response in temperate watersheds to these drivers depends on light availability regulated by riparian canopy cover. In larger rivers, GPP increased more than ER during drought, even leading to temporary autotrophy, an otherwise rare event in the typically light‐limited heterotrophic Connecticut River main stem. With climate change, rivers and streams may become warmer and drought frequency and severity may increase. Such changes may increase autotrophy in rivers with broad implications for carbon cycling and water quality in aquatic ecosystems.
-
Abstract Although time series in ecosystem metabolism are well characterized in small and medium rivers, patterns in the world's largest rivers are almost unknown. Large rivers present technical difficulties, including depth measurements, gas exchange (, ) estimates, and the presence of large dams, which can supersaturate gases. We estimated reach‐scale metabolism for the Hanford Reach of the Columbia River (Washington state, USA), a free‐flowing stretch with an average discharge of 3173 . We calculated from semi‐empirical models and directly estimated it from tracer measurements. We fixed at the median value from these calculations (0.5 ), and used maximum likelihood to estimate reach‐scale, open‐channel metabolism. Both gross primary production (GPP) and ecosystem respiration (ER) were high (GPP range: 0.3–30.8 g , ER range: 0.8–30.6 g ), with peak GPP and ER occurring in the late summer or early fall. GPP increased exponentially with temperature, consistent with metabolic theory, while light was seasonally saturating. Annual average GPP, estimated at 1500 g carbon , was in the top 2% of estimates for other rivers. GPP and ER were tightly coupled and 90% of GPP was immediately respired, resulting in net ecosystem production near 0. Patterns in the Hanford Reach contrast with those in small‐medium rivers, suggesting that metabolism magnitudes and patterns in large rivers may not be simply scaled from knowledge of smaller rivers.