skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A modified depth of knowledge framework for word problems.
Depth-of-knowledge (DOK) is a means to communicate the cognitive demand of tasks and is often used to categorize assessment items. Webb’s (2002) framework has been applied across content areas. The aim of this two-phase iterative study was to modify Webb’s DOK framework for word problems. Through work with school partners, this iterative design-research based study provides supportive evidence for a modified DOK framework reflecting levels of complexity in word problems. The resulting modified DOK framework presents an opportunity for mathematics educators to reflect on various aspects of cognitive complexity.  more » « less
Award ID(s):
2100988 1720646
PAR ID:
10517399
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Lamberg, Teruni; Moss, Diana
Publisher / Repository:
PMENA
Date Published:
Page Range / eLocation ID:
228-233
Subject(s) / Keyword(s):
problem solving assessment
Format(s):
Medium: X
Location:
Reno, NV
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores an iterative approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot’s poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess. 
    more » « less
  2. A memristor crossbar, which is constructed with memristor devices, has the unique ability to change and memorize the state of each of its memristor elements. It also has other highly desirable features such as high density, low power operation and excellent scalability. Hence the memristor crossbar technology can potentially be utilized for developing low-complexity and high-scalability solution frameworks for solving a large class of convex optimization problems, which involve extensive matrix operations and have critical applications in multiple disciplines. This paper, as the first attempt towards this direction, proposes a novel memristor crossbar-based framework for solving two important convex optimization problems, i.e., second-order cone programming (SOCP) and homogeneous quadratically constrained quadratic programming (QCQP) problems. In this paper, the alternating direction method of multipliers (ADMM) is adopted. It splits the SOCP and homogeneous QCQP problems into sub-problems that involve the solution of linear systems, which could be effectively solved using the memristor crossbar in O(1) time complexity. The proposed algorithm is an iterative procedure that iterates a constant number of times. Therefore, algorithms to solve SOCP and homogeneous QCQP problems have pseudo-O(N) complexity, which is a significant reduction compared to the state-of-the-art software solvers (O(N3.5)-O(N4)). 
    more » « less
  3. Abstract Discrete ill‐posed inverse problems arise in many areas of science and engineering. Their solutions are very sensitive to perturbations in the data. Regularization methods aim at reducing this sensitivity. This article considers an iterative regularization method, based on iterated Tikhonov regularization, that was proposed in M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill‐posed problems, with application to image deblurring,Inverse Problems, 29 (2013), Art. 095008, 16 pages. In this method, the exact operator is approximated by an operator that is easier to work with. However, the convergence theory requires the approximating operator to be spectrally equivalent to the original operator. This condition is rarely satisfied in practice. Nevertheless, this iterative method determines accurate image restorations in many situations. We propose a modification of the iterative method, that relaxes the demand of spectral equivalence to a requirement that is easier to satisfy. We show that, although the modified method is not an iterative regularization method, it maintains one of the most important theoretical properties for this kind of methods, namely monotonic decrease of the reconstruction error. Several computed experiments show the good performances of the proposed method. 
    more » « less
  4. In this paper, we answer two questions on the complexities of decision problems of groups, each related to a classical result. First, Miller characterized the complexity of the isomorphism problem for finitely presented groups in 1971. We do the same for the isomorphism problem for recursively presented groups. Second, the fact that every Turing degree appears as the degree of the word problem of a finitely presented group is shown independently by multiple people in the 1960s. We answer the analogous question for degrees of ceers instead of Turing degrees. We show that the set of ceers which are computably equivalent to the word problem of a finitely presented group is [Formula: see text]-complete, which is the maximal possible complexity. 
    more » « less
  5. Quadratic performance indices associated with linear plants offer simplicity and lead to linear feedback control laws, but they may not adequately capture the complexity and flexibility required to address various practical control problems. One notable example is to improve, by using possibly nonlinear laws, on the trade-off between rise time and overshoot commonly observed in classical regulator problems with linear feedback control laws. To address these issues, non-quadratic terms can be introduced into the performance index, resulting in nonlinear control laws. In this study, we tackle the challenge of solving optimal control problems with non-quadratic performance indices using the closed-loop neighboring extremal optimal control (NEOC) approach and homotopy method. Building upon the foundation of the Linear Quadratic Regulator (LQR) framework, we introduce a parameter associated with the non-quadratic terms in the cost function, which is continuously adjusted from 0 to 1. We propose an iterative algorithm based on a closed-loop NEOC framework to handle each gradual adjustment. Additionally, we discuss and analyze the classical work of Bass and Webber, whose approach involves including additional non-quadratic terms in the performance index to render the resulting Hamilton-Jacobi equation analytically solvable. Our findings are supported by numerical examples. 
    more » « less