skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear Feedback Control Design via NEOC
Quadratic performance indices associated with linear plants offer simplicity and lead to linear feedback control laws, but they may not adequately capture the complexity and flexibility required to address various practical control problems. One notable example is to improve, by using possibly nonlinear laws, on the trade-off between rise time and overshoot commonly observed in classical regulator problems with linear feedback control laws. To address these issues, non-quadratic terms can be introduced into the performance index, resulting in nonlinear control laws. In this study, we tackle the challenge of solving optimal control problems with non-quadratic performance indices using the closed-loop neighboring extremal optimal control (NEOC) approach and homotopy method. Building upon the foundation of the Linear Quadratic Regulator (LQR) framework, we introduce a parameter associated with the non-quadratic terms in the cost function, which is continuously adjusted from 0 to 1. We propose an iterative algorithm based on a closed-loop NEOC framework to handle each gradual adjustment. Additionally, we discuss and analyze the classical work of Bass and Webber, whose approach involves including additional non-quadratic terms in the performance index to render the resulting Hamilton-Jacobi equation analytically solvable. Our findings are supported by numerical examples.  more » « less
Award ID(s):
2120430
PAR ID:
10535362
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Xplore
Date Published:
Journal Name:
IEEE Control Systems Letters
ISSN:
2475-1456
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Closed-loop stability of uncertain linear systems is studied under the state feedback realized by a linear quadratic regulator (LQR). Sufficient conditions are presented that ensure the closed-loop stability in the presence of uncertainty, initially for the case of a non-robust LQR designed for a nominal model not reflecting the system uncertainty. Since these conditions are usually violated for a large uncertainty, a procedure is offered to redesign such a non-robust LQR into a robust one that ensures closed-loop stability under a predefined level of uncertainty. The analysis of this paper largely relies on the concept of inverse optimal control to construct suitable performance measures for uncertain linear systems, which are non-quadratic in structure but yield optimal controls in the form of LQR. The relationship between robust LQR and zero-sum linear quadratic dynamic games is established. 
    more » « less
  2. This paper addresses the problem of learning the optimal control policy for a nonlinear stochastic dynam- ical. This problem is subject to the ‘curse of dimension- ality’ associated with the dynamic programming method. This paper proposes a novel decoupled data-based con- trol (D2C) algorithm that addresses this problem using a decoupled, ‘open-loop - closed-loop’, approach. First, an open-loop deterministic trajectory optimization problem is solved using a black-box simulation model of the dynamical system. Then, closed-loop control is developed around this open-loop trajectory by linearization of the dynamics about this nominal trajectory. By virtue of linearization, a linear quadratic regulator based algorithm can be used for this closed-loop control. We show that the performance of D2C algorithm is approximately optimal. Moreover, simulation performance suggests a significant reduction in training time compared to other state of the art algorithms. 
    more » « less
  3. In feedback control of dynamical systems, the choice of a higher loop gain is typically desirable to achieve a faster closed-loop dynamics, smaller tracking error, and more effective disturbance suppression. Yet, an increased loop gain requires a higher control effort, which can extend beyond the actuation capacity of the feedback system and intermittently cause actuator saturation. To benefit from the advantages of a high feedback gain and simultaneously avoid actuator saturation, this paper advocates a dynamic gain adaptation technique in which the loop gain is lowered whenever necessary to prevent actuator saturation, and is raised again whenever possible. This concept is optimized for linear systems based on an optimal control formulation inspired by the notion of linear quadratic regulator (LQR). The quadratic cost functional adopted in LQR is modified into a certain quasi-quadratic form in which the control cost is dynamically emphasized or deemphasized as a function of the system state. The optimal control law resulted from this quasi-quadratic cost functional is essentially nonlinear, but its structure resembles an LQR with an adaptable gain adjusted by the state of system, aimed to prevent actuator saturation. Moreover, under mild assumptions analogous to those of LQR, this optimal control law is stabilizing. As an illustrative example, application of this optimal control law in feedback design for dc servomotors is examined, and its performance is verified by numerical simulations. 
    more » « less
  4. A general problem encompassing output regulation and pattern generation can be formulated as the design of controllers to achieve convergence to a persistent trajectory within the zero dynamics on which an output vanishes. We develop an optimal control theory for such design by adding the requirement to minimize the H2 norm of a closed-loop transfer function. Within the framework of eigenstructure assignment, the optimal control is proven identical to the standard H2 control in form. However, the solution to the Riccati equation for the linear quadratic regulator is not stabilizing. Instead it partially stabilizes the closed-loop dynamics excluding the zero dynamics. The optimal control architecture is shown to have the feedback of the deviation from the subspace of the zero dynamics and the feedforward of the control input to remain in the subspace. 
    more » « less
  5. As more non-synchronous renewable energy sources (RES) participate in power systems, the system's inertia decreases and becomes time dependent, challenging the ability of existing control schemes to maintain frequency stability. System operators, research laboratories, and academic institutes have expressed the importance to adapt to this new power system paradigm. As one of the potential solutions, virtual inertia has become an active research area. However, power dynamics have been modeled as time-invariant, by not modeling the variability in the system's inertia. To address this, we propose a new modeling framework for power system dynamics to simulate a time-varying evolution of rotational inertia coefficients in a network. We model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the network. We test the performance of two classical controllers from the literature in this new hybrid modeling framework: optimal closed-loop Model Predictive Control (MPC) and virtual inertia placement. Results show that the optimal closed-loop MPC controller (Linear MPC) performs the best in terms of cost; it is 82 percent less expensive than virtual inertia placement. It is also more efficient in terms of energy injected/absorbed to control frequency. To address the lower performance of virtual inertia placement, we then propose a new Dynamic Inertia Placement scheme and we find that it is more efficient in terms of cost (74 percent cheaper) and energy usage, compared to classical inertia placement schemes from the literature. 
    more » « less