- Award ID(s):
- 2153750
- PAR ID:
- 10517419
- Publisher / Repository:
- Analysis and PDE
- Date Published:
- Journal Name:
- Analysis & PDE
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 2157-5045
- Page Range / eLocation ID:
- 1693 to 1760
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The abundance of satellite galaxies is set by the hierarchical assembly of their host halo. We leverage this to investigate the low-mass end (
M H< 1011M ⊙) of the stellar-to-halo mass relation (SHMR), which is key to constraining theories of galaxy formation and cosmology. We argue that recent analyses of satellite galaxies in the Local Group environment have not adequately modeled the dominant source of scatter in satellite stellar mass functions: the variance in accretion histories for a fixed host halo mass. We present a novel inference framework that not only properly accounts for this halo-to-halo variance but also naturally identifies the amount of host halo mass mixing, which is generally unknown. Specifically, we use the semianalyticalSatGen model to construct mock satellite galaxy populations consistent with the third data release of the Satellites Around Galactic Analogs survey. We demonstrate that even under the most idealized circumstances, the halo-to-halo variance makes it virtually impossible to put any meaningful constraints on the scatter in the SHMR. Even a satellite galaxy survey made up 100 hosts can at best only place an upper limit of ∼0.5 dex on the scatter (at the 95% confidence level). This is because the large variance in halo assembly histories dominates over the scatter in the SHMR. This problem can be overcome by increasing the sample size of the survey by an order of magnitude (∼1000 host galaxies), something that should be fairly straightforward with forthcoming spectroscopic surveys. -
This is the data used to create the published study of the same name published in the Journal of Hydrology in 2022 (10.1016/j.jconhyd.2022.104068). Shallow (<30 m) reducing groundwater commonly contains abundant dissolved arsenic (As) in Bangladesh. We hypothesize that dissolved As in iron (Fe)-rich groundwater discharging to rivers is trapped onto Fe(III)-oxyhydroxides which precipitate in shallow riverbank sediments under the influence of tidal fluctuations. Therefore, the goal of this study is to compare the calculated mass of sediment-bound As that would be sequestered from dissolved groundwater As that discharges through riverbanks of the Meghna River to the observed mass of As trapped within riverbank sediments. To calculate groundwater discharge, a Boussinesq aquifer analytical groundwater flow model was developed and constrained by cyclical seasonal fluctuations in hydraulic heads and river stages observed at three sites along a 13 km reach in central Bangladesh. At all sites, groundwater discharges to the river year-round but most of it passes through an intertidal zone created by ocean tides propagating upstream from the Bay of Bengal in the dry season. The annualized groundwater discharge per unit width at the three sites ranges from 173 to 891 m2/yr (average 540 m2/yr). Assuming that riverbanks have been stable since the Brahmaputra River avulsed far away from this area 200 years ago and dissolved As is completely trapped within riverbank sediments, the mass of accumulated sediment As can be calculated by multiplying groundwater discharge by ambient aquifer As concentrations measured in 1969 wells. Across all sites, the range of calculated sediment As concentrations in the riverbank is 78–849 mg/kg, which is higher than the observed concentrations (17–599 mg/kg). This discovery supports the hypothesis that the dissolved As in groundwater discharge to the river is sufficient to account for the observed buried deposits of As along riverbanks.more » « less