Abstract Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M⊙. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relatively weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.
more »
« less
NuSTAR Observations of Candidate Subparsec Binary Supermassive Black Holes
Abstract We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs. We previously observed these AGN with Chandra and found no differences between their low-energy X-ray properties and the larger AGN population. However, some models predict differences to be more prominent at energies higher than probed by Chandra. We find that even at the higher energies probed by NuSTAR, the spectra of these AGN are indistinguishable from the larger AGN population. This could rule out models predicting large differences in the X-ray spectra in the NuSTAR bands. Alternatively, it might mean that these three AGN are not binary SMBHs.
more »
« less
- PAR ID:
- 10517549
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 966
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT; $$N_{\rm H}\ge 10^{24}\rm \, cm^{-2}$$) peaks at $$74_{-19}^{+14}{{\ \rm per\ cent}}$$ at a late merger stage, prior to coalescence, when the nuclei have projected separations (dsep) of 0.4–6 kpc. A similar peak is also observed in the median NH [$$(1.6\pm 0.5)\times 10^{24}\rm \, cm^{-2}$$]. The vast majority ($$85^{+7}_{-9}{{\ \rm per\ cent}}$$) of the AGNs in the final merger stages (dsep ≲ 10 kpc) are heavily obscured ($$N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$$), and the median NH of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the $$N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$$ gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity ($$L_{2-10}\lesssim 10^{43}\rm \, erg\, s^{-1}$$) AGNs in U/LIRGs.more » « less
-
Abstract Supermassive black holes (SMBHs) reside at the center of every massive galaxy in the local universe with masses that closely correlate with observations of their host galaxy, implying a connected evolutionary history. The population of binary SMBHs, which form following galaxy mergers, is expected to produce a gravitational-wave background (GWB) detectable by pulsar timing arrays (PTAs). PTAs are starting to see hints of what may be a GWB, and the amplitude of the emerging signal is toward the higher end of model predictions. Simulated populations of binary SMBHs can be constructed from observations of galaxies and are used to make predictions about the nature of the GWB. The greatest source of uncertainty in these observation-based models comes from the inference of the SMBH mass function, which is derived from observed host galaxy properties. In this paper, I undertake a new approach for inferring the SMBH mass function, starting from a velocity dispersion function rather than a galaxy stellar mass function. I argue that this method allows for a more direct inference by relying on a larger suite of individual galaxy observations as well as relying on a more “fundamental” SMBH mass relation. I find that the resulting binary SMBH population contains more massive systems at higher redshifts than previous models. Additionally, I explore the implications for the detection of individually resolvable sources in PTA data.more » « less
-
Abstract Dust-obscured galaxies (DOGs) are enshrouded by dust and many are believed to host accreting supermassive black holes (SMBHs), which makes them unique objects for probing the coevolution of galaxies and SMBHs. We select and characterize DOGs in the 13 deg2XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS), leveraging the superb multiwavelength data—from X-rays to radio. We select 3738 DOGs atz≈ 1.6–2.1 in XMM-SERVS, while maintaining good data quality without introducing significant bias. This represents the largest DOG sample with thorough multiwavelength source characterization. Spectral energy distribution modeling shows DOGs are a heterogeneous population consisting of both normal galaxies and active galactic nuclei (AGNs). Our DOGs are massive ( ), 174 are detected in X-rays, and they are generally radio-quiet systems. X-ray detected DOGs are luminous and are moderately to heavily obscured in X-rays. Stacking analyses for the X-ray undetected DOGs show highly significant average detections. Critically, we compare DOGs with matched galaxy populations. DOGs have similar AGN fractions compared with typical galaxy populations. X-ray detected DOGs have higherM⋆and higher X-ray obscuration, but they are not more star-forming than typical X-ray AGNs. Our results potentially challenge the relevance of the merger-driven galaxy-SMBH coevolution framework for X-ray detected DOGs.more » « less
-
Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with /erg and heavily obscured with . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks.more » « less
An official website of the United States government

