skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective and Equivalent Refractive Index Models for Patterned Solar Cell Films via a Robust Homogenization Method
Solar cells containing complex geometric structures such as texturing, photonic crystals, and plasmonics are becoming increasingly popular, but this complexity also creates increased computational demand when designing these devices through costly full-wave simulations. Treating these complex geometries by modeling them as homogeneous slabs can greatly speed up these computations. To this end, we introduce a simple and robust method to solve the branching problem in the homogenization of metamaterials. We start from the branch of the complex logarithm in the Nicolson-Ross-Weir method with the minimum absolute mean derivative in the low frequency range and enforce continuity. This is followed by comparing the reflectance, transmittance, and absorptance of the original and homogenized slabs. We use our method to demonstrate accurate and fast optical simulations of patterned PbS colloidal quantum dot solar cell films. We also compare patterned solar cells homogenized via equivalent models (wavelength-scale features) and effective models (sub-wavelength-scale features), finding that for the latter, agreement is almost exact, whereas the former contains small errors due to the unphysical nature of the homogeneity assumption for that size regime. This method can greatly reduce computational cost and thus facilitate the design of optical structures for solar cell applications.  more » « less
Award ID(s):
1846239
PAR ID:
10517575
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-6059-0
Page Range / eLocation ID:
1 to 3
Format(s):
Medium: X
Location:
San Juan, PR, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Metamaterials are complex structured mixed-material systems with tailored physical properties that have found applications in a variety of optical and electronic technologies. New methods for homogenizing the optical properties of metamaterials are of increasing importance, both to study their exotic properties and because the simulation of these complex structures is computationally expensive. We propose a method to extract a homogeneous refractive index and wave impedance for inhomogeneous materials. We examine effective medium models, where inhomogeneities are subwavelength, and equivalent models where features are larger. Homogenization is only physically justified in the former; however, it is still useful in the latter if only the reflection, transmission, and absorption are of interest. We introduce a resolution of the branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of the complex logarithm beginning with the minimum absolute mean derivative and then enforcing continuity, and also determine an effective thickness. We demonstrate the proposed method on patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may not be. This work illuminates the difference between the two types of models, allowing for better analysis and interpretation of the optical properties of complex metamaterials. 
    more » « less
  2. Abstract Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially‐encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol‐yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter‐scale areas using mask‐free digital photolithography. Sequence‐specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein–DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially‐encoded cellular signaling environments. 
    more » « less
  3. Abstract In order to understand the effect of cellular level features on the transport of circulating cancer cells in the microcirculation, there has been an increasing reliance on high-resolution in silico models. Accurate simulation of cancer cells flowing with blood cells requires resolving cellular-scale interactions in 3D, which is a significant computational undertaking warranting a cancer cell model that is both computationally efficient yet sufficiently complex to capture relevant behavior. Given that the characteristics of metastatic spread are known to depend on cancer type, it is crucial to account for mechanistic behavior representative of a specific cancer’s cells. To address this gap, in the present work we develop and validate a means by which an efficient and popular membrane model-based approach can be used to simulate deformable cancer cells and reproduce experimental data from specific cell lines. Here, cells are modeled using the immersed boundary method (IBM) within a lattice Boltzmann method (LBM) fluid solver, and the finite element method (FEM) is used to model cell membrane resistance to deformation. Through detailed comparisons with experiments, we (i) validate this model to represent cancer cells undergoing large deformation, (ii) outline a systematic approach to parameterize different cell lines to optimally fit experimental data over a range of deformations, and (iii) provide new insight into nucleated vs. non-nucleated cell models and their ability to match experiments. While many works have used the membrane-model based method employed here to model generic cancer cells, no quantitative comparisons with experiments exist in the literature for specific cell lines undergoing large deformation. Here, we describe a phenomenological, data-driven approach that can not only yield good agreement for large deformations, but explicitly detail how it can be used to represent different cancer cell lines. This model is readily incorporated into cell-resolved hemodynamic transport simulations, and thus offers significant potential to complement experiments towards providing new insights into various aspects of cancer progression. 
    more » « less
  4. Abstract Rapid and strategic cell placement is necessary for high throughput tissue fabrication. Current adhesive cell patterning systems rely on fluidic shear flow to remove cells outside of the patterned regions, but limitations in washing complexity and uniformity prevent adhesive patterns from being widely applied. Centrifugation is commonly used to study the adhesive strength of cells to various substrates; however, the approach has not been applied to selective cell adhesion systems to create highly organized cell patterns. This study shows centrifugation as a promising method to wash cellular patterns after selective binding of cells to the surface has taken place. After patterning H9C2 cells using biotin-streptavidin as a model adhesive patterning system and washing with centrifugation, there is a significant number of cells removed outside of the patterned areas of the substrate compared to the initial seeding, while there is not a significant number removed from the desired patterned areas. This method is effective in patterning multiple size and linear structures from line widths of 50–200 μm without compromising immediate cell viability below 80%. We also test this procedure on a variety of tube-forming cell lines (MPCs, HUVECs) on various tissue-like surface materials (collagen 1 and Matrigel) with no significant differences in their respective tube formation metrics when the cells were seeded directly on their unconjugated surface versus patterned and washed through centrifugation. This result demonstrates that our patterning and centrifugation system can be adapted to a variety of cell types and substrates to create patterns tailored to many biological applications. 
    more » « less
  5. ABSTRACT Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions. IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells. 
    more » « less