The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels.
more »
« less
Studying excited-state-specific perturbation theory on the Thiel set
We explore the performance of a recently introduced N5-scaling excited-state-specific second order perturbation theory (ESMP2) on the singlet excitations of the Thiel benchmarking set. We find that, without regularization, ESMP2 is quite sensitive to π system size, performing well in molecules with small π systems but poorly in those with larger π systems. With regularization, ESMP2 is far less sensitive to π system size and shows a higher overall accuracy on the Thiel set than CC2, equation of motion-coupled cluster with singles and doubles, CC3, and a wide variety of time-dependent density functional approaches. Unsurprisingly, even regularized ESMP2 is less accurate than multi-reference perturbation theory on this test set, which can, in part, be explained by the set’s inclusion of some doubly excited states but none of the strong charge transfer states that often pose challenges for state-averaging. Beyond energetics, we find that the ESMP2 doubles norm offers a relatively low-cost way to test for doubly excited character without the need to define an active space.
more »
« less
- Award ID(s):
- 1848012
- PAR ID:
- 10517624
- Publisher / Repository:
- The Journal of Chemical Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 158
- Issue:
- 22
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 224113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the experimental resonance enhanced multiphoton ionization spectrum of isoquinoline between 315 and 310 nm, along with correlated electronic structure calculations on the ground and excited states of this species. This spectral region spans the origin transitions to a π–π* excited state, which previous work has suggested to be vibronically coupled with a lower lying singlet n–π* state. Our computational results corroborate previous density functional theory calculations that predict the vertical excitation energy for the n–π* state to be higher than the π–π* state; however, we find an increase in the C–N–C angle brings the n–π* state below the energy of the π–π* state. The calculations find two out-of-plane vibrational modes of the n–π* state, which may be brought into near resonance with the π–π* state as the C–N–C bond angle increases. Therefore, the C–N–C bond angle may be important in activating vibronic coupling between the states. We fit the experimental rotational contour with a genetic algorithm to determine the excited state rotational constants and orientation of the transition dipole moment. The fits show a mostly in-plane polarized transition, and the projection of the transition dipole moment in the a-b plane is about 84° away from the a axis. These results are consistent with the prediction of our electronic structure calculations for the transition dipole moment of the π–π* excited state.more » « less
-
The strong couplings between electronic states in conical intersection regions are among the most challenging problems in quantum chemistry. XMS-CASPT2, a second-order multireference quasidegenerate perturbation theory, has been successful in describing potential energy surfaces near the conical intersections. We have recently proposed a less expensive method for this problem, namely state-interaction pair-density functional theory (SI-PDFT), which considers the coupling between electronic states described by multiconfiguration pair-density functional theory (MC-PDFT). Here we test the accuracy of SI-PDFT for closely coupled potential energy surfaces of methylamine along five different reaction paths for N–H bond fission. We choose paths that pass close to a conical intersection of the ground and first excited states. We find that SI-PDFT predicts potential energy curves and energy splittings near the locally avoided crossing in close proximity to those obtained by XMS-CASPT2. This validates the method for application to photochemical simulations.more » « less
-
Chromophore–radical (C–R) dyads are a promising class of molecules with potential applications in magnetometry, nuclear magnetic resonance and quantum sensing. Given the vast chemical space that is possible in these systems, computational studies are vital to aid in the rational design of C–R molecules with desired electronic and spin properties. Multireference perturbation theory (MRPT) calculations have been shown to be useful for rationalizing spin correlations in C–R dyads. In this work we apply quasi-degenerate perturbation theory, specifically QD-NEVPT2, for the prediction of vertical transition energies (VTEs) as well as spin-correlation parameters in three-spin-center pentacene–radical dyads containing up to 153 atoms. We find that QD-NEVPT2 performs well in the prediction of JTR, the magnetic coupling parameter between the excited-state triplet and the radical, but underestimates VTEs; this underestimation is attributed to variational averaging over different spin states and active space limitations, and we show that addressing these shortcomings reduces error. The calculated magnitudes and signs of JTR are rationalized through molecular symmetry, coupling distance, and π-structure considerations. The predicted signs of JTR are consistent with and explained via mechanisms of kinetic and potential spin-exchange, allowing for future functional design of magnetic organic molecules. The role of active space choice on VTE accuracy and predicted magnetic coupling is additionally explored.more » « less
-
Abstract A proper understanding of excited state properties of indole derivatives can lead to rational design of efficient fluorescent probes. The optically active and excited states of a series of substituted indoles, where a substituent was placed on position four, were calculated using equation of motion coupled cluster and time dependent density functional theory. The results indicate that most substituted indoles have a brighter second excited state corresponding to experimental absorption maxima, but a few with electron withdrawing substituents absorb more on the first excited state. Absorption on the first excited state may increase their fluorescence quantum yield, making them better probes. Electronic structure methods were found to predict the energies of the systems with electron withdrawing substituents more accurately than those with electron donating substituents. The excited states of both states correlated well with electrophilicity, similar to the experimental trends for the absorption maxima. Overall, these computational studies indicate that theory can be used to predict excited state properties of substituted indoles, when the substituent is an electron withdrawing group.more » « less
An official website of the United States government

