Hard disks systems are often considered as prototypes for simple fluids. In a statistical mechanics context, the hard disk configuration space is generally quotiented by the action of various symmetry groups. The changes in the topological and geometric properties of the configuration spaces effected by such quotient maps are studied for small numbers of disks on a square and hexagonal torus. A metric is defined on the configuration space and the various quotient spaces that respects the desired symmetries. This is used to construct explicit triangulations of the configuration spaces as
 Award ID(s):
 1839370
 NSFPAR ID:
 10517710
 Publisher / Repository:
 American Physical Society
 Date Published:
 Journal Name:
 Physical Review E
 Volume:
 107
 Issue:
 6
 ISSN:
 24700045
 Page Range / eLocation ID:
 064107
 Subject(s) / Keyword(s):
 Classical statistical mechanics Phase transitions
 Format(s):
 Medium: X Size: 6.9MB Other: pdf
 Size(s):
 6.9MB
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract complexes. Critical points of the hard disk potential on a configuration space are associated with changes in the topology of the accessible part of the configuration space as a function of disk radius, are conjectured to be related to the configurational entropy of glassy systems, and could reveal the origins of phase transitions in other systems. The number of critical points and their topological and geometric properties are found to depend on the symmetries by which the configuration space is quotiented.$$\alpha$$ $\alpha $Graphic abstract 
Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only centralforce interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only centralforce interactions exhibit a discontinuity in the shear modulus. We study the finitesize scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both nonmeanfield behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the selfaveraging properties of fiber networks.more » « less

Let $V_1, V_2, V_3, \dots $ be a sequence of $\mathbb {Q}$vector spaces where $V_n$ carries an action of $\mathfrak{S}_n$. Representation stability and multiplicity stability are two related notions of when the sequence $V_n$ has a limit. An important source of stability phenomena arises when $V_n$ is the $d^{th}$ homology group (for fixed $d$) of the configuration space of $n$ distinct points in some fixed topological space $X$. We replace these configuration spaces with moduli spaces of tuples $(W_1, \dots, W_n)$ of subspaces of a fixed complex vector space $\mathbb {C}^N$ such that $W_1 + \cdots + W_n = \mathbb {C}^N$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory.more » « less

The complexity of gas and condensed phase chemical reactions has generally been uncovered either approximately through transition state theories or exactly through (analytic or computational) integration of trajectories. These approaches can be improved by recognizing that the dynamics and associated geometric structures exist in phase space, ensuring that the propagator is symplectic as in velocityVerlet integrators and by extending the space of dividing surfaces to optimize the rate variationally, respectively. The dividing surface can be analytically or variationally optimized in phase space, not just over configuration space, to obtain more accurate rates. Thus, a phase space perspective is of primary importance in creating a deeper understanding of the geometric structure of chemical reactions. A key contribution from dynamical systems theory is the generalization of the transition state (TS) in terms of the normally hyperbolic invariant manifold (NHIM) whose geometric phasespace structure persists under perturbation. The NHIM can be regarded as an anchor of a dividing surface in phase space and it gives rise to an exact nonrecrossing TS theory rate in reactions that are dominated by a single bottleneck. Here, we review recent advances of phase space geometrical structures of particular relevance to chemical reactions in the condensed phase. We also provide conjectures on the promise of these techniques toward the design and control of chemical reactions.

Abstract Statistical thermodynamics is valuable as a conceptual structure that shapes our thinking about equilibrium thermodynamic states. A cloud of unresolved questions surrounding the foundations of the theory could lead an impartial observer to conclude that statistical thermodynamics is in a state of crisis though. Indeed, the discussion about the microscopic origins of irreversibility has continued in the scientific community for more than a hundred years. This paper considers these questions while beginning to develop a statistical thermodynamics for finite nonequilibrium systems. Definitions are proposed for all of the extrinsic variables of the fundamental thermodynamic relation that are consistent with existing results in the equilibrium thermodynamic limit. The probability density function on the phase space is interpreted as a subjective uncertainty about the microstate, and the Gibbs entropy formula is modified to allow for entropy creation without introducing additional physics or modifying the phase space dynamics. Resolutions are proposed to the mixing paradox, Gibbs’ paradox, Loschmidt’s paradox, and Maxwell’s demon thought experiment. Finally, the extrinsic variables of the fundamental thermodynamic relation are evaluated as functions of time and space for a diffusing ideal gas, and the initial and final values are shown to coincide with the expected equilibrium values.more » « less