A wide range of dark matter candidates have been proposed and are actively being searched for in a large number of experiments, both at high (TeV) and low (sub meV) energies. One dark matter candidate, a deeply bound
Analog quantum simulators rely on programmable and scalable quantum devices to emulate Hamiltonians describing various physical phenomenon. Photonic coupled cavity arrays are a promising alternative platform for realizing such simulators, due to their potential for scalability, small size, and high-temperature operability. However, programmability and nonlinearity in photonic cavities remain outstanding challenges. Here, using a silicon photonic coupled cavity array made up of
- Award ID(s):
- 2103673
- PAR ID:
- 10517881
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract uuddss sexaquark, , with mass$$S$$ GeV (having the same quark content as the hypothesized H-dibaryon, but long lived) is particularly difficult to explore experimentally. In this paper, we propose a scheme in which such a state could be produced at rest through the formation of$$\sim 2$$ –$$\bar{p}$$ He antiprotonic atoms and their annihilation into$$^3$$ +$$S$$ , identified both through the unique tag of a$$K^+K^+\pi ^-$$ final state, as well as through full kinematic reconstruction of the final state recoiling against it.$$S=+2, Q=+1$$ -
Abstract We consider the
d -dimensional MagnetoHydroDynamics (MHD) system defined on a sufficiently smooth bounded domain, with homogeneous boundary conditions, and subject to external sources assumed to cause instability. The initial conditions for both fluid and magnetic equations are taken of low regularity. We then seek to uniformly stabilize such MHD system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, static, feedback controls, which are localized on an arbitrarily small interior subdomain. In additional, they will be minimal in number. The resulting space of well-posedness and stabilization is a suitable product space$$d = 2,3$$ of tight Besov spaces for the fluid velocity component and the magnetic field component (each “close” to$$\displaystyle \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega )\times \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega ), \, 1< p < \frac{2q}{2q-1}, \, q > d,$$ for$$\textbf{L}^3(\Omega )$$ ). Showing maximal$$d = 3$$ -regularity up to$$L^p$$ for the feedback stabilized linear system is critical for the analysis of well-posedness and stabilization of the feedback nonlinear problem.$$T = \infty $$ -
A bstract In this paper we explore
pp →W ± (ℓ ± ν )γ to in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of the$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ W ± → ℓ ± ν , making the calculation actually . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ $$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ B μν , which contribute to directly and not to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ . We show several distributions to illustrate the shape differences of the different contributions.$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ -
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble
for$$\hbox {CLE}_{\kappa '}$$ in (4, 8) that is drawn on an independent$$\kappa '$$ -LQG surface for$$\gamma $$ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ for$$\hbox {CLE}_{\kappa }$$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ in terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ p and . This description was complete up to one missing parameter$$1-p$$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ p and . It shows in particular that$$\kappa '$$ and$$\hbox {CLE}_{\kappa '}$$ are related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -state Potts model (which makes sense even for non-integerq between 1 and 4) if and only if . This provides further evidence for the long-standing belief that$$q=4\cos ^2(4\pi / \kappa ')$$ and$$\hbox {CLE}_{\kappa '}$$ represent the scaling limits of$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -Potts model whenq and are related in this way. Another consequence of the formula for$$\kappa '$$ is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.$$\rho (p,\kappa ')$$ -
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ c polarised and$$ \mu ^{+}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{-}$$ $$c^2$$ 17.0 GeV/$$< W<$$ , 1.0 (GeV/$$c^2$$ c )$$^2$$ 10.0 (GeV/$$< Q^2<$$ c ) and 0.01 (GeV/$$^2$$ c )$$^2$$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ c ) . Here,$$^2$$ W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ the transverse momentum of the$$p_{\textrm{T}}$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ s -channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive production.$$\rho ^0$$