skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-volatile electrically programmable integrated photonics with a 5-bit operation
Abstract Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of$$\sim 10\,{fJ}/n{m}^{3}$$ ~ 10 f J / n m 3 . Remarkably, Sb2S3is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.  more » « less
Award ID(s):
2003509
PAR ID:
10473674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Comm.
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Programmable photonic integrated circuits (PICs) consisting of reconfigurable on-chip optical components have been creating new paradigms in various applications, such as integrated spectroscopy, multi-purpose microwave photonics, and optical information processing. Among many reconfiguration mechanisms, non-volatile chalcogenide phase-change materials (PCMs) exhibit a promising approach to the future very-large-scale programmable PICs, thanks to their zero static power and large optical index modulation, leading to extremely low energy consumption and ultra-compact footprints. However, the scalability of the current PCM-based programmable PICs is still limited since they are not directly off-the-shelf in commercial photonic foundries now. Here, we demonstrate a scalable platform harnessing the mature and reliable 300 mm silicon photonic fab, assisted by an in-house wide-bandgap PCM (Sb2S3) integration process. We show various non-volatile programmable devices, including micro-ring resonators, Mach-Zehnder interferometers and asymmetric directional couplers, with low loss (~0.0044 dB/µm), large phase shift (~0.012 π/µm) and high endurance (>5000 switching events with little performance degradation). Moreover, we showcase this platform’s capability of handling relatively complex structures such as multiple PIN diode heaters in devices, each independently controlling an Sb2S3segment. By reliably setting the Sb2S3segments to fully amorphous or crystalline state, we achieved deterministic multilevel operation. An asymmetric directional coupler with two unequal-length Sb2S3segments showed the capability of four-level switching, beyond cross-and-bar binary states. We further showed unbalanced Mach-Zehnder interferometers with equal-length and unequal-length Sb2S3segments, exhibiting reversible switching and a maximum of 5 ($$N+1,N=4$$ N + 1 , N = 4 ) and 8 ($${2}^{N},N=3$$ 2 N , N = 3 ) equally spaced operation levels, respectively. This work lays the foundation for future programmable very-large-scale PICs with deterministic programmability. 
    more » « less
  2. Abstract We present a randomized approach for wait-free locks with strong bounds on time and fairness in a context in which any process can be arbitrarily delayed. Our approach supports a tryLock operation that is given a set of locks, and code to run when all the locks are acquired. A tryLock operation may fail if there is contention on the locks, in which case the code is not run. Given an upper bound$$\kappa $$ κ known to the algorithm on the point contention of any lock, and an upper boundLon the number of locks in a tryLock’s set, a tryLock will succeed in acquiring its locks and running the code with probability at least$$1/(\kappa L)$$ 1 / ( κ L ) . It is thus fair. Furthermore, if the maximum step complexity for the code in any lock isT, the operation will take$$O(\kappa ^2 L^2 T)$$ O ( κ 2 L 2 T ) steps, regardless of whether it succeeds or fails. The operations are independent, thus if the tryLock is repeatedly retried on failure, it will succeed in$$O(\kappa ^3 L^3 T)$$ O ( κ 3 L 3 T ) expected steps. If the algorithm does not know the bounds$$\kappa $$ κ andL, we present a variant that can guarantee a probability of at least$$1/\kappa L\log (\kappa L T)$$ 1 / κ L log ( κ L T ) of success. We assume an oblivious adversarial scheduler, which does not make decisions based on the operations, but can predetermine any schedule for the processes, which is unknown to our algorithm. Furthermore, to account for applications that change their future requests based on the results of previous tryLock operations, we strengthen the adversary by allowing decisions of the start times and lock sets of tryLock operations to be made adaptively, given the history of the execution so far. 
    more » « less
  3. Abstract Analog quantum simulators rely on programmable and scalable quantum devices to emulate Hamiltonians describing various physical phenomenon. Photonic coupled cavity arrays are a promising alternative platform for realizing such simulators, due to their potential for scalability, small size, and high-temperature operability. However, programmability and nonlinearity in photonic cavities remain outstanding challenges. Here, using a silicon photonic coupled cavity array made up of$$8$$ 8 high quality factor ($$Q$$ Q up to$$\, \sim 7.1\times {10}^{4}$$ ~ 7.1 × 10 4 ) resonators and equipped with specially designed thermo-optic island heaters for independent control of cavities, we demonstrate a programmable photonic cavity array in the telecom regime, implementing tight-binding Hamiltonians with access to the full eigenenergy spectrum. We report a$$\sim 50\%$$ ~ 50 % reduction in the thermal crosstalk between neighboring sites of the cavity array compared to traditional heaters, and then present a control scheme to program the cavity array to a given tight-binding Hamiltonian. The ability to independently program high-Q photonic cavities, along with the compatibility of silicon photonics to high volume manufacturing opens new opportunities for scalable quantum simulation using telecom regime infrared photons. 
    more » « less
  4. Abstract Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$ ( 10 7 Re 10 3 ) . Fluid drag is conceptualized via a critical Reynolds number:$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$ Re = v 0 x 0 ν , wherev0corresponds to the maximum wetting speed on a flat, dry surface andx0is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction withv0andx0measurements using Water$${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 2 m / s , 25 µ m x 0 28 µ m ) , viscous FC-70$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 0.3 m / s , 18.6 µ m x 0 38.6 µ m ) and lower viscosity Ethanol$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 1.2 m / s , 11.8 µ m x 0 33.3 µ m )
    more » « less
  5. Abstract A search for the very rare$$B^{*0}\rightarrow \mu ^+\mu ^-$$ B 0 μ + μ - and$$B_{s}^{*0}\rightarrow \mu ^+\mu ^-$$ B s 0 μ + μ - decays is conducted by analysing the$$B_c^+\rightarrow \pi ^+\mu ^+\mu ^-$$ B c + π + μ + μ - process. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9$$\text {\,fb}^{-1}$$ \,fb - 1 . The signal signatures correspond to simultaneous peaks in the$$\mu ^+\mu ^-$$ μ + μ - and$$\pi ^+\mu ^+\mu ^-$$ π + μ + μ - invariant masses. No evidence for an excess of events over background is observed for either signal decay mode. Upper limits at the$$90\%$$ 90 % confidence level are set on the branching fractions relative to that for$$B_c^+\rightarrow J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+$$ B c + J / ψ π + decays,$$\begin{aligned} \mathcal{R}_{B^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 3.8\times 10^{-5}\ \text { and }\\ \mathcal{R}_{B_{s}^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 5.0\times 10^{-5}. \end{aligned}$$ R B 0 ( μ + μ - ) π + / J / ψ π + < 3.8 × 10 - 5 and R B s 0 ( μ + μ - ) π + / J / ψ π + < 5.0 × 10 - 5 .  
    more » « less