Rare earth element (REE) deposits are commonly associated with carbonatites and (per)alkaline rocks where hydrothermal magmatic fluids can play a significant role in REE mobilization and deposition [1]. Thermodynamic modeling permits predicting the evolution of ore-forming fluids and can be used to test different controls on hydrothermal REE mobility including temperature, pressure, the solubility of REE minerals, aqueous REE speciation and pH evolution associated with fluid-rock interaction. Previous modeling studies either focused on REE fluoride/chloride complexation in acidic aqueous fluids [2] or near neutral/alkaline fluids associated with calcite vein formation [3]. Such models were also applied to interpret field observations in REE deposits Bayan Obo in China and Bear Lodge in Wyoming [3,4]. Recent hydrothermal calcite-fluid REE partitioning experiments provide new data to simulate the solubility of REE in calcite, REE carbonates/fluorocarbonates at high temperatures [5, 6]. We studied the competing effects controlling the mobility of REE in hydrothermal fluids between 100 and 400 °C at 500 bar. Speciation calculations were carried out in the Ca-F-CO2-Na-Cl-H2O system using the GEMS code package [7]. The properties of minerals and aqueous species were taken from the MINES thermodynamic database [3,5]. The Gallinas Mountains hydrothermal REE deposit in New Mexico was used as a field analogue to compare our models with the formation of calcite-fluorite veins hosting bastnäsite. Previous fluid inclusion studies hypothesized that the REE were transported as fluoride complexes [8] but more recent modeling studies have shown that fluoride essentially acts as a depositing ligand [2]. Here we show more detailed simulations predicting the stability of fluorite, calcite and REE minerals relevant to ore-forming processes in carbonatites and alkaline systems. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Migdisov and Williams-Jones (2014), Mineral. Deposita 49, 987-997. [3] Perry and Gysi (2018), Geofluids; [4] Liu et al. (2020), Minerals 10, 495; [5] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197; [6] Gysi and Williams-Jones (2015) Chem. Geol. 392, 87-101;[7] Kulik et al. (2013), Computat. Geosci. 17, 1-24; [8] Williams-Jones et al. (2000), Econ. Geol. 95, 327-341 
                        more » 
                        « less   
                    
                            
                            What controls the mobility of rare earth elements (REE) in critical mineral deposits in acidic vs. alkaline hydrothermal fluids?
                        
                    
    
            (Per)alkaline complexes and carbonatites evolve through a complex sequence of magmatic-hydrothermal processes. Most of them are overprinted by late auto-metasomatic processes which involves the mobilization, fractionation and/or enrichment of critical elements, such as the rare earth elements (REE) [1]. However, our current ability to predict the behavior of REE in high temperature aqueous fluids and interpret these natural systems using geochemical modeling depends on the availability of thermodynamic data for the REE minerals and aqueous species. Previous experimental work on REE solubility has focused on acidic aqueous fluids up to ~300 °C and considered chloride, fluoride and sulfate as important ligands for their transport [2]. However, magmatic-hydrothermal systems that form these critical mineral deposits may cover a wider range of fluid chemistries spanning acidic to alkaline pH as well as temperatures and pressures at which the fluids are supercritical. A few recently published studies have shown that other ligands (e.g., REE carbonates and/or combined fluoride species) could become important in near-neutral to alkaline fluids [3,4], and that REE mobility can also be increased in saline alkaline fluids reacted with fluorite [5]. Here we present new hydrothermal REE hydroxyl/chloride speciation data and REE phosphate/hydroxide minerals [6,7], calcite and fluorite solubility experiments as a function of pH, salinity and temperature. We use an integrated approach to link a wide array of experimental techniques (solubility, calorimetry, and spectroscopy) with thermodynamic optimizations using GEMSFITS [8], and present the development of a new experimental database for REE and its integration into the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb). The latter permits simulating hydrothermal fluid-rock interaction and ore-forming processes in critical mineral deposits to better understand the behavior of REE during metasomatism. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2039674
- PAR ID:
- 10517889
- Publisher / Repository:
- European Association of Geochemistry
- Date Published:
- Format(s):
- Medium: X
- Location:
- Lyon, France
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Critical mineral deposits form through an interplay of magmatic-hydrothermal processes in carbonatites and (per)alkaline systems during their emplacement in the Earth’s crust. Hydrothermal aqueous fluids can lead to the mobilization, transport, and deposition of the rare earth elements (REE) coupled to development of alteration zones at the deposit scale [1]. However, unraveling the underlying processes that affect the solubility of REE in these geologic fluids is a challenge in high temperature and pressure fluids [2]. A holistic approach is key to understand the controls of fluid-rock interaction in mobilizing REE in critical mineral deposits. Through a joint effort, we formed a new U.S. geoscience critical minerals experimental–thermodynamic research hub between New Mexico Tech, Los Alamos National Laboratory and Indiana University. The goal of this project is to conduct frontiers research on the behavior of critical elements in supercritical aqueous fluids by integration of a wide array of high temperature solubility experiments complemented by spectroscopic measurements and molecular dynamic simulations. Here we present current advances to simulate a significant vein paragenesis of barite + fluorite +calcite +bastnäsite-(Ce) observed in many critical mineral deposits. A case study will be presented from the Gallinas Mountains REE-fluorite hydrothermal breccia deposit in New Mexico. Using the GEMS code package [3] and the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb), we highlight our current capabilities and limitations to simulate the behavior of REE in these hydrothermal fluids and minerals. A thermodynamic model is presented to simulate the partitioning of REE between calcite- and fluorite-fluid based on recent and ongoing experimental and thermodynamic work on the synthesis of REE doped minerals [4] and REE speciation in acidic and alkaline fluids. We further show how to integrate multiple experimental datasets and develop new thermodynamic models based on the new research efforts from the research hub and future directions to improve our prediction capabilities of REE complexation in supercritical fluids. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Migdisov et al. (2016), Chemical Geology 439, 13-42. [3] Kulik et al. (2013), Comput Geosci 17, 1–24. [4] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197.more » « less
- 
            The rare earth elements (REE) are essential for the high-tech and green technology industries, and used, for example, in computers, smartphones, and wind turbines. The REE are considered critical minerals and can be highly enriched in certain magmatic-hydrothermal systems including alkaline complexes and carbonatites. Almost all of the critical mineral deposits show a complex overprint by hydrothermal processes during their genesis. However, our understanding of the mobility in these ore- forming systems and our knowledge about the stability of REE minerals is still very limited. The MINES thermodynamic database is an open-access database and continuously updated with the most up to date thermodynamic data for REE aqueous species and minerals. This database also includes rock-forming minerals and permits simulating the mineralogy and alteration geochemistry that relates to the formation of these critical mineral deposits. This study gives a short overview of the MINES thermodynamic database and the GEMS code package for simulating the formation of hydrothermal calcite, fluorite and bastnäsite-(Ce) veins relevant to interpreting critical mineral deposits.more » « less
- 
            Critical mineral deposits commonly form in magmatic-hydrothermal systems including carbonatites and/or alkaline syenites, and more evolved peralkaline granites where the rare earth element (REE) undergo a complex array of partitioning, transport and mineralization. Significant alteration and veining zones develop in these deposits and can be used to vector ore zones in the field [1]. The REE ore minerals typically reflect the characteristics of these systems, which are enriched in carbonate, fluoride, and phosphate or a combination thereof. The REE can also be incorporated into vein minerals such as calcite, fluorite and apatite where the REE3+ exchange for Ca2+ on the crystal lattice [2]. These minerals give us clues about the hydrothermal reaction paths of REE in critical mineral deposits. This study aims to: 1) present our recent findings from hydrothermal fluid-mineral REE partitioning experiments, 2) discuss thermodynamic models to simulate REE in critical mineral deposits, and 3) link the thermodynamic simulations to field observations. Hydrothermal fluid-calcite partitioning experiments were conducted between 100 and 200 °C by hydrothermal fluid mixing and precipitation [2] at near neutral to mildly alkaline pH (6 – 9). The REE concentrations in synthetic calcite crystals and aqueous fluids sampled in situ were used to fit the data to the lattice strain model [3] and using the Dual Thermodynamic approach [4]. A second type of experiment consisted of reacting natural fluorite and apatite crystals with acidic to mildly acidic (pH of 2 – 4) aqueous fluids in batch-type reactors to study the behavior of REE and mineral dissolution-precipitation reactions near crystal surfaces. The GEMS code package [5] was used to implement these new data into a thermodynamic model and simulate possible REE reaction paths in hydrothermal fluids. Two REE mineral deposits in New Mexico (Lemitar and Gallinas Mountains) present ideal case studies to illustrate how these models can be linked to field observations from natural systems. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197; [3] Blundy and Wood (1994) Nature 372, 452-454; [4] Kulik (2006), Chem. Geol. 225, 189-212; [5] Kulik et al. (2013), Computat. Geosci. 17, 1-24.more » « less
- 
            Rare earth elements (REE) are critical elements found in monazite, xenotime, and hydrated REE phosphates which typically form in hydrothermal mineral deposits. Accurate predictions of the solubility of these REE phosphates and the speciation of REE in aqueous fluids are both key to understanding the controls on the transport, fractionation, and deposition of REE in natural systems. Previous monazite and xenotime solubility experiments indicate the presence of large discrepancies between experimentally derived solubility constants versus calculated solubilities by combining different data sources for the thermodynamic properties of minerals and aqueous species at hydrothermal conditions. In this study, these discrepancies were resolved by using the program GEMSFITS to optimize the standard partial molal Gibbs energy of formation (ΔfG°298) of REE aqueous species (REE3+ and REE hydroxyl complexes) at 298.15 K and 1 bar while keeping the thermodynamic properties fixed for the REE phosphates. A comprehensive experimental database was compiled using solubility data available between 25 and 300 °C. The latter permits conducting thermodynamic parameter optimization of ΔfG°298 for REE aqueous species. Optimal matching of the rhabdophane solubility data between 25 and 100 °C requires modifying the ΔfG°298 values of REE3+ by 1–6 kJ/mol, whereas matching of the monazite solubility data between 100 and 300 °C requires modifying the ΔfG°298 values of both REE3+ and REEOH2+ by ∼ 2–10 kJ/mol and ∼ 15–31 kJ/mol, respectively. For xenotime, adjustments of ΔfG°298 values by 1–26 kJ/mol are only necessary for the REE3+ species. The optimizations indicate that the solubility of monazite in acidic solutions is controlled by the light (L)REE3+ species at <150 °C and the LREEOH2+ species at >150 °C, whereas the solubility of xenotime is controlled by the heavy (H)REE3+ species between 25 and 300 °C. Based on the optimization results, we conclude that the revised Helgeson-Kirkham-Flowers equation of state does not reliably predict the thermodynamic properties of REE3+, REEOH2+, and likely other REE hydroxyl species at hydrothermal conditions. We therefore provide an experimental database (ThermoExp_REE) as a basic framework for future updates, extensions with other ligands, and optimizations as new experimental REE data become available. The optimized thermodynamic properties of aqueous species and minerals are available open access to accurately predict the solubility of REE phosphates in fluid-rock systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    